首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The shear viscosity eta(s), mutual diffusion coefficient D, and ultrasonic attenuation spectra of the nitroethane-cyclohexane mixture of critical composition have been measured at various temperatures near the critical temperature T(c). The relaxation rate of order parameter fluctuations resulting from a combined evaluation of the eta(s) and D data follows power law behavior with the theoretical exponent and with the large amplitude Gamma(o)=(156+/-2)x10(9) s(-1). The ultrasonic spectra have been evaluated in terms of a critical contribution and a noncritical background contribution. The amplitude of the former exhibits a temperature dependence, in conformity with a temperature dependence in the adiabatic coupling constant (|g| = 0.064 near T(c) and 0.1 at T-T(c)=3 K). If the variation of the critical amplitude with T is taken into account the experimental attenuation coefficient data display a scaling function which nicely fits to the theoretical prediction from the Bhattacharjee-Ferrell dynamic scaling model [R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. A 31, 1788 (1985)].  相似文献   

2.
Acoustical attenuation spectrometry, dynamic light scattering, shear viscosity, density, and heat capacity measurements of the methanol/n-hexane mixture of critical composition have been performed. The critical part in the sonic attenuation coefficients nicely fits to the empirical scaling function of the Bhattacharjee-Ferrell [Phys. Rev. A 24, 1643 (1981)] dynamic scaling model if the theoretically predicted scaled half-attenuation frequency Omega(12) (BF)=2.1 is used. The relaxation rates of order parameter fluctuations, as resulting from the acoustical spectra, within the limits of experimental error agree with those from a combined evaluation of the light scattering and shear viscosity measurements. Both series of data display power law with amplitude Gamma(0)=44x10(9) s(-1). The amplitude of the fluctuation correlation length follows as xi(0)=0.33 nm from the light scattering data and as xi(0)=0.32 nm from the amplitude of the singular part of the heat capacity if the two-scale factor universality relation is used. The adiabatic coupling constant g=0.11 results from the amplitude of the critical contribution to the acoustical spectrum near the critical point, in conformity with g=0.12 as following from the variation of the critical temperature with pressure along the critical line and the thermal expansion coefficient.  相似文献   

3.
Shear viscosity and dynamic light scattering measurements as well as ultrasonic spectrometry studies of the nitroethane/3-methylpentane mixture of critical composition have been performed at various temperatures near the critical temperature, T(c). A combined evaluation of the shear viscosity and mutual diffusion coefficient data yielded the amplitude, xi(0), of the fluctuation correlation length, xi, assumed to follow power law, and the relaxation rate, Gamma, or order parameter fluctuations. The latter was found to follow power law with the theoretical universal exponent. The amplitudes xi(0) = 0.23 +/- 0.02 nm and Gamma(0) = (125 +/- 5) x 10(9) s(-1) nicely agree with literature values. Using the relaxation rates resulting from the viscosity and diffusion coefficient data, the scaling function has been calculated assuming the ultrasonic spectra to be composed of a critical part and a noncritical background contribution. The experimental scaling function fits well to the predictions of the Bhattacharjee-Ferrell dynamic scaling model with scaled half-attenuation frequency, Omega(BF)1/2= 2.1. The amplitude of the sonic spectra yields the amount |g| = 0.26 of the adiabatic coupling constant, g, in fair agreement with -0.29 from another thermodynamic relation.  相似文献   

4.
The specific heat C(p) at constant pressure, the shear viscosity eta(s), and the mutual diffusion coefficient D of the 2,6-dimethylpyridine-water mixture of critical composition have been measured in the homogeneous phase at various temperatures near the lower critical demixing temperature T(c). The amplitude of the fluctuation correlation length xi(0)=(0.198+/-0.004) nm has been derived from a combined evaluation of the eta(s) and D data. This value is in reasonable agreement with the one obtained from the amplitude A(+)=(0.26+/-0.01) J(g K) of the critical term in the specific heat, using the two-scale-factor universality relation. Within the limits of error the relaxation rate Gamma of order parameter fluctuations follows power law with the theoretical universal exponent and with the amplitude Gamma=(25+/-1)x10(9) s(-1). No indications of interferences of the critical fluctuations with other elementary chemical reactions have been found. A noteworthy result is the agreement of the background viscosity eta(b), resulting from the treatment of eta(s) and D data, with the viscosity eta(s)(nu=0) extrapolated from high-frequency viscosity data. The latter have been measured in the frequency range of 5-130 MHz using a novel shear impedance spectrometer.  相似文献   

5.
Ultrasonic attenuation spectra of the nitrobenzene-n-hexane mixture of critical composition have been analysed. Data between 50 kHz and 1 GHz from different sources have been included to show that at a given temperature the spectra, in addition to the critical contribution, reveal a non-critical relaxation term. Taking this additional term into account inconsistencies in the scaling function reported in the literature are avoided. In the final analysis the scaling function of the nitrobenzene-n-hexane system follows the predictions of the Bhattacharjee-Ferrell theory with critical amplitude and relaxation rate of concentration fluctuations in nice agreement with determinations from independent methods. The low-frequency attenuation data are briefly discussed with a view to a bulk viscosity approach which yields a slightly different proportionality constant in the linear regime of the scaling function than the Bhattacharjee-Ferrell theory. Evidence in favour of the latter is obtained.  相似文献   

6.
Using the equal volume criterion and also the pseudospinodal conception the critical demixing point of the triethylene glycol monoheptyl ether/water system (C7E3H2O) has been determined as Ycrit=0.1 and Tcrit=296.46 K (Y, mass fraction of surfactant). From density measurements the critical micelle concentration (cmc) followed as Ycmc=0.007 at 288.15 K and Ycmc=0.0066 at 298.15 K. The (static) shear viscosity etas and the mutual diffusion coefficient D of the C7E3H2O mixture of critical composition have been evaluated to yield their singular and background parts. From a combined treatment of both quantities the relaxation rate Gamma of order parameter fluctuations has been derived. Gamma follows power law with universal critical exponent and amplitude Gamma0=3.1 x 10(9) s(-1). Broadband ultrasonic spectra of C7E3H2O mixtures exhibit a noncritical relaxation, reflecting the monomer exchange between micelles and the suspending phase, and a critical term due to concentration fluctuations. The former is subject to a relaxation time distribution that broadens when approaching the critical temperature. The latter can be well represented with the aid of the dynamic scaling model by Bhattacharjee and Ferrell (BF) [Phys. Rev. A. 31, 1788 (1985)]. The half-attenuation frequency in the scaling function of the latter model is noticeably smaller (Omega12 (BF) approximately 1) than the theoretically predicted value Omega12 (BF)=2.1. This result has been taken as an indication of a coupling between the fluctuations in the local concentration and the kinetics of micelle formation, in correspondence with the idea of a fluctuation controlled monomer exchange [T. Telgmann and U. Kaatze, Langmuir 18, 3068 (2002)].  相似文献   

7.
Molecular-dynamics simulations are presented for the dynamic behavior of the Widom-Rowlinson mixture [B. Widom, and J. S. Rowlinson, J. Chem. Phys. 52, 1670 (1970)] at its critical point. This model consists of two components where like species do not interact and unlike species interact via a hard-core potential. Critical exponents are obtained from a finite-size scaling analysis. The self-diffusion coefficient shows no anomalous behavior near the critical point. The shear viscosity and thermal conductivity show no divergent behavior for the system sizes considered, although there is a significant critical enhancement. The mutual diffusion coefficient, D(AB), vanishes as D(AB) approximately xi(-1.26 +/- 0.08), where xi is the correlation length. This is different from the renormalization-group (D(AB) approximately xi(-1.065)) mode coupling theory (D(AB) approximately xi(-1)) predictions. The theories and simulations can be reconciled if we assume that logarithmic corrections to scaling are important.  相似文献   

8.
Between 100 kHz and 1 MHz, special ultrasonic attenuation measurements of the triethylamine-water mixture of critical composition have been performed for the determination of the Bhattacharjee-Ferrell scaling function. The experimental data are evaluated considering two noncritical Debye-type relaxation terms as revealed by broadband ultrasonic spectra. Shear viscosity and dynamic light scattering data from the literature are re-evaluated to yield the relaxation rate of order parameter fluctuations of the critical system as a function of temperature. The power law behavior found for the relaxtion rate fits to the scaling function in the ultrasonic spectra. The relaxation times of the noncritical Debye terms display a non-Arrhenius temperature dependence, pointing at effects of slowing in the chemical reactions associated with the relaxations.  相似文献   

9.
Brillouin light scattering spectra from transverse and longitudinal acoustic waves in liquid and supercooled 3-methylpentane have been collected from room temperature down to 80 K, just above the glass transition. Spectra at different wave vectors have been obtained using 532 nm and 266 nm excitation. We found evidence of a shear relaxation with a characteristic time of 100 s at the glass transition which only partly accounts for the relaxation observed in the propagation and attenuation of the longitudinal modes. The inclusion of a relaxing bulk viscosity contribution with a relaxation time of the order of 10(2) ns at the glass transition is found to adequately reproduce the experimental data including transient grating data at a much lower frequency. A consistent picture of relaxed shear and bulk moduli as a function of temperature is derived. These two quantities are found to be related by a linear relation suggesting that a Cauchy-like relation holds also above the glass transition.  相似文献   

10.
The translational diffusion coefficient D(trans) for rubrene, 9,10-bis(phenylethynyl)anthracene (BPEA), and tetracene in the fragile molecular glass-former sucrose benzoate (SB) (Tg=337 K) was studied as a function of temperature from Tg+3 K to Tg+71 K by use of the holographic fluorescence recovery after photobleaching technique. The values of D(trans) vary by five to six orders of magnitude in this temperature range. Contrary to the predictions of the Stokes-Einstein equation, the temperature dependence of probe diffusion in SB over the temperature range of the measurements is weaker than that of T/eta, where eta is the shear viscosity. In going from the crossover temperature Tx approximately 1.2Tg to Tg, D(trans)eta/T increases by factors of 2.4+/-0.2 decades for rubrene, 3.4+/-0.2 decades for BPEA, and 3.8+/-0.4 decades for tetracene. The decoupling between probe diffusion in SB and viscosity is characterized by the scaling law D(trans) approximately T/eta(xi), with xi=0.621 for tetracene, 0.654 for BPEA, and 0.722 for rubrene. Data for probe diffusion in SB are combined with data from the literature for probe diffusion in ortho-terphenyl and alphaalphabeta-tris(naphthyl)benzene in a plot of enhancement versus the relative probe size parameter rho(m)=(m(p)m(h))(1/3), where m(p) and m(h) are, respectively, the molecular weights of the probe and host solvent. The plot clearly shows a sharp increase in enhancement of translational diffusion at rho(m) approximately 1. By applying temperature shifts, D(trans) for probe diffusion in SB and the dielectric relaxation time tau(D) can be superimposed on a single master curve based on the Williams-Landel-Ferry equation. This suggests that the dynamics of probe diffusion in SB is described by the scaling relationship D(trans) approximately 1/tau(D)(T+DeltaT), where tau(D)(T+DeltaT) is the temperature-shifted dielectric relaxation time. The results from this study are discussed within the context of dynamic heterogeneity in glass-forming liquids.  相似文献   

11.
The translational diffusion of rubrene in the fragile molecular glass former, sucrose benzoate (SB) (fragility index m approximately 94), has been studied from T(g)+6 K to T(g)+71 K(T(g)=337 K) by using the technique of holographic fluorescence recovery after photobleaching. In the temperature range of the measurements, the translational relaxation functions were observed to decay exponentially, indicating that Fick's law of diffusion governs the translational motion of rubrene in sucrose benzoate. The value of the translational diffusion coefficient D(T) obtained from the 1e time of the translational relaxation function varied from 5.3 x 10(-15) cm2 s(-1) at 343 K to 5.0x10(-9) cm2 s(-1) at 408 K. The temperature dependence of D(T) for diffusion of rubrene in SB is compared with that of the viscosity and the dielectric relaxation time tau(D) of SB. The temperature dependence of D(T) is weaker than that of Teta for T<1.2T(g) but tracks the reciprocal of the dielectric relaxation time 1tau(D) for 1.05T(g)相似文献   

12.
Molecular dynamics simulation was used to calculate rotational relaxation time, diffusion coefficient, and zero-shear viscosity for a pure aromatic compound (naphthalene) and for aromatic and aliphatic components in model asphalt systems over a temperature range of 298-443 K. The model asphalt systems were chosen previously to represent real asphalt. Green-Kubo and Einstein methods were used to estimate viscosity at high temperature (443.15 K). Rotational relaxation times were calculated by nonlinear regression of orientation correlation functions to a modified Kohlrausch-Williams-Watts function. The Vogel-Fulcher-Tammann equation was used to analyze the temperature dependences of relaxation time, viscosity, and diffusion coefficient. The temperature dependences of viscosity and relaxation time were related using the Debye-Stokes-Einstein equation, enabling viscosity at low temperatures of two model asphalt systems to be estimated from high temperature (443.15 K) viscosity and temperature-dependent relaxation time results. Semiquantitative accuracy of such an equivalent temperature dependence was found for naphthalene. Diffusion coefficient showed a much smaller temperature dependence for all components in the model asphalt systems. Dimethylnaphthalene diffused the fastest while asphaltene molecules diffused the slowest. Neat naphthalene diffused faster than any component in model asphalts.  相似文献   

13.
We present an extensive set of measurements of steady shear viscosity (eta degrees(s)), longitudinal elastic modulus (M'), and ultrasonic absorption (alpha) in the one-phase isotropic liquid region of the non-ionic surfactant C12E8 aqueous solutions. Within a given temperature interval, this phase extends along the entire surfactant concentration range that could be fully covered in the experiments. In agreement with previous studies, the overall results support the presence of two separated intervals of concentration corresponding to different structural properties. In the surfactant-rich region the temperature dependence of eta degrees(s) follows an equation characteristic of glass-like systems. The ultrasonic absorption spectra show unambiguous evidence of viscoelastic behavior that can be described by a Cole-Cole relaxation formula. In this region, when both the absorption and the frequency are scaled by the static shear viscosity (eta degrees(s)), the scaled attenuation reduces to a single universal curve for all temperatures and concentrations. In the water-rich region the behavior of eta degrees(s), M', and alpha are more complex and reflect the presence of dispersed aggregates whose size increases with temperature and concentration. At these concentrations the ultrasonic spectra are characterized by a multiple decay rate. The high-frequency tail falls in the same frequency range seen at high surfactant content and exhibits similar behaviors. This contribution is ascribed to the mixture of hydrophilic terminations and water present at the micellar interfaces that resembles the condition of a concentrated polymer solution. An additional low-frequency contribution is also observed, which is ascribed to the exchange of water molecules and/or surfactant monomers between the aggregates and the bulk solvent region.  相似文献   

14.
A symmetrical binary, A+B Lennard-Jones mixture is studied by a combination of semi-grand-canonical Monte Carlo (SGMC) and molecular dynamics (MD) methods near a liquid-liquid critical temperature T(c). Choosing equal chemical potentials for the two species, the SGMC switches identities (A-->B-->A) to generate well-equilibrated configurations of the system on the coexistence curve for TT(c). A finite-size scaling analysis of the concentration susceptibility above T(c) and of the order parameter below T(c) is performed, varying the number of particles from N=400 to 12 800. The data are fully compatible with the expected critical exponents of the three-dimensional Ising universality class. The equilibrium configurations from the SGMC runs are used as initial states for microcanonical MD runs, from which transport coefficients are extracted. Self-diffusion coefficients are obtained from the Einstein relation, while the interdiffusion coefficient and the shear viscosity are estimated from Green-Kubo expressions. As expected, the self-diffusion constant does not display a detectable critical anomaly. With appropriate finite-size scaling analysis, we show that the simulation data for the shear viscosity and the mutual diffusion constant are quite consistent both with the theoretically predicted behavior, including the critical exponents and amplitudes, and with the most accurate experimental evidence.  相似文献   

15.
The influence of periodic shear deformation and steady flow on a typical amorphous polymer is discussed. Forced sinusoidal vibrations were applied and the complex viscosity was determined. The action of a vibration of finite amplitude is equivalent to steady flow with a definite finite shear rate. Both processes cause truncation of the long-time part of the relaxation specturm. It may be accepted to a first approximation that the long-time boundary of the remaining part of the relaxation spectrum conforms to the long-time part of the initial spectrum, even if the plateau region of the spectrum is truncated. The concept of limiting truncation of the short-time part of the spectrum is introduced, this corresponding to the minimum absolute value of the complex viscosity versus reduced frequency and the lowest values of the dynamic and apparent viscosities. With an approximate representation of the relaxation spectrum, calculations were made of the maximum values of the viscosity and the coefficient relating the first difference of normal stresses to the square of the shear rate, and also of the apparent viscosity and normal stresses as functions of the shear rate. The calculated values are compared with experimental measurements, and it is shown that the correlation of the apparent viscosity and the absolute value of the complex viscosity is distributed at high frequencies, being superseded by a correlation between the apparent and dynamic viscosities.  相似文献   

16.
The persistence of shear stress fluctuations in viscous liquids is a direct consequence of the non-zero shear stress of the local potential minima which couples stress relaxation to transitions between inherent structures. In simulations of 2D and 3D glass forming mixtures, we calculate the distribution of this inherent shear stress and demonstrate that the variance is independent of temperature and obeys a power law in density. The inherent stress is shown to involve only long wavelength fluctuations, evidence of the central role of the static boundary conditions in determining the residual stress left after the minimization of the potential energy. A temperature T(η) is defined to characterise the crossover from stress relaxation governed by binary collisions at high temperatures to low temperature relaxation dominated by the relaxation of the inherent stress. T(η) is found to coincide with the breakdown of the Stokes-Einstein scaling of diffusion and viscosity.  相似文献   

17.
Brillouin spectroscopy was used to investigate viscoelastic properties of a two-component system consisting of a high viscosity liquid (HVL) and a low viscosity liquid (LVL), both able to polymerize. The model liquids were: 2,2-bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane (abbreviated as bis-GMA, HVL) and benzyl methacrylate (BzMA, LVL). The viscosity of the system was regulated by changing the monomer ratio. Hypersonic velocity and attenuation coefficient were investigated in a temperature range covering viscoelastic relaxation process. The dependence of the longitudinal viscosity on the system composition was determined. Additionally, the Brillouin studies were accompanied by some supplementary experimental methods, like low frequency shear viscosity measurements and observations of phase transitions by differential scanning calorimetry (DSC). The investigated monomer mixtures were then polymerized in a light-induced process and the polymerization kinetic curves were measured to find the possible correlation between the viscoelastic properties of the monomer mixture (as observed by Brillouin spectroscopy) and the polymerization course.  相似文献   

18.
Broadband dielectric and terahertz spectroscopy (10(-2)-10(+12) Hz) are combined with pulsed field gradient nuclear magnetic resonance (PFG-NMR) to explore charge transport and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. The dielectric spectra are interpreted as superposition of high-frequency relaxation processes associated with dipolar librations and a conductivity contribution. The latter originates from hopping of charge carriers on a random spatially varying potential landscape and quantitatively fits the observed frequency and temperature dependence of the spectra. A further analysis delivers the hopping rate and enables one to deduce--using the Einstein-Smoluchowski equation--the translational diffusion coefficient of the charge carriers in quantitative agreement with PFG-NMR measurements. By that, the mobility is determined and separated from the charge carrier density; for the former, a Vogel-Fulcher-Tammann and for the latter, an Arrhenius temperature dependence is obtained. There is no indication of a mode arising from the reorientation of stable ion pairs.  相似文献   

19.
20.
The frequency dependence (119-7860 Hz) of the storage and loss shear moduli, G' and G', of human erythrocyte spectrin dimer crude solutions at 22.5 degrees C has been measured using a Birnboim-Schrag multiple lumped resonator viscoelastometer. The measurements were carried out on solutions of ionic strength 1 mM containing 1.1-3.7 mg ml-1 spectrin. This corresponds to the terminal zone for G' and G'. Analysis of the data using the standard theory of hybrid relaxation spectra yields a relaxation time of 22.5 +/- 1 microseconds. The pure spectrin dimer relaxation time is estimated to be 16 +/- 3 microseconds. This result suggests that at an ionic strength of 1 mM, the spectrin dimers are extended and that the main relaxation process is simple end-over-end rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号