共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper focuses on two recent topics in living cationic polymerization of vinyl monomers, i.e., (a) Development of new initiating systems: RCOOH/Lewis acid for vinyl ethers; CH3CH(C6H5)Cl/SnCl4/nBu4NCl for styrene. (b) Synthesis of shape-controlled poly(vinyl ethers): Tri-armed star polymers; Multi-armed spherical polymers. For the RCOOH-based systems, a generalized concept of living cationic polymerization was discussed on the basis of the effects of the counteranions (or R) and Lewis acids (ZnCl2 and EtAlCl2). The CH3CH(C6H5)Cl-based system permitted a truly living cationic polymerization of styrene. The tri- and multi-armed poly(vinyl ethers) included new amphiphilic polymers of unique topology, solubility, etc., all of which were prepared by living cationic polymerization. 相似文献
2.
Tamotsu Hashimoto Yusuke Makino Michio Urushisaki Toshikazu Sakaguchi 《Journal of polymer science. Part A, Polymer chemistry》2008,46(5):1629-1637
Living cationic polymerization of 2‐adamantyl vinyl ether (2‐vinyloxytricyclo[3.3.1.1]3,7decane; 2‐AdVE) was achieved with the CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride/ethyl acetate [CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5/CH3COOEt] initiating system in toluene at 0 °C. The number‐average molecular weights (Mn's) of the obtained poly(2‐AdVE)s increased in direct proportion to monomer conversion and produced the polymers with narrow molecular weight distributions (MWDs) (Mw/Mn = ~1.1). When a second monomer feed was added to the almost polymerized reaction mixture, the added monomer was completely consumed and the Mn's of the polymers showed a direct increase against conversion of the added monomer. Block and statistical copolymerization of 2‐AdVE with n‐butyl vinyl ether (CH2?CH? O? CH2 CH2CH2CH3; NBVE) were possible via living process based on the same initiating system to give the corresponding copolymers with narrow MWDs. Grass transition temperature (Tg) and thermal decomposition temperature (Td) of the poly(2‐AdVE) (e.g., Mn = 22,000, Mw/Mn = 1.17) were 178 and 323 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1629–1637, 2008 相似文献
3.
Toshinobu Higashimura Akio Tanizaki Mitsuo Sawamoto 《Journal of polymer science. Part A, Polymer chemistry》1984,22(11):3173-3181
Isobutyl propenyl ether [IBPE; CH3CH=CH? OCH2CH(CH3)2] was polymerized with a mixture of hydrogen iodide and iodine (HI/I2 initiator) in n-hexane at ?40°C to yield living polymers with a nearly monodisperse molecular weight distribution (MWD) (M?w/M?n ≈ 1.1). The number-average molecular weight (M?n) of the polymers increased proportionally to IBPE conversion and further increased when a new monomer feed was added to a completely polymerized solution. The M?n was controlled by the initial concentration of hydrogen iodide if the acid was charged in excess over iodine. In polymerization by iodine alone the M?n of the polymers obtained in nonpolar solvents (n-hexane and toluene) also increased with conversion, but their MWD was broader (M?w/M?n = 1.3–1.4) than in the HI/I2-initiated systems under similar conditions. The iodine-initiated polymerization in polar CH2Cl2 solvent, in contrast, led to nonliving polymers with a broad MWD (M?n/M?n = 1.6–1.8) and M?n, independent of conversion. The living polymerization of IBPE was also compared with that of the corresponding isobutyl vinyl ether, to determine the effect of the β-methyl group in IBPE. 相似文献
4.
Tamotsu Hashimoto Michio Urushisaki 《Journal of polymer science. Part A, Polymer chemistry》2007,45(21):4855-4866
The living cationic polymerization of 5‐ethyl‐2‐methyl‐5‐(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a vinyl ether with a cyclic acetal unit, was investigated with various initiating systems in toluene or methylene chloride at 0 to ?30 °C. With initiating systems such as hydrogen chloride (HCl)/zinc chloride (ZnCl2), isobutyl vinyl ether–acetic acid adduct [CH3CH(OiBu)OCOCH3]/tin tetrabromide (SnBr4)/di‐tert‐butylpyridine (DTBP), and CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride (Et1.5AlCl1.5)/ethyl acetate (CH3COOEt), the number‐average molecular weights (Mn's) of the obtained poly( 1 )s increased in direct proportion to the monomer conversion and produced polymers with relatively narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.2–1.3]. To investigate the living nature of the polymerization with CH3CH(OiBu)OCOCH3/SnBr4/DTBP, a second monomer feed was added to the almost polymerized reaction mixture. The added monomer was completely consumed, and the Mn values of the polymers showed a direct increase against the conversion of the added monomer, indicating the formation of a long‐lived propagating species. The glass transition temperature and thermal decomposition temperature of poly( 1 ) (e.g., Mn = 13,600, Mw/Mn = 1.30) were 29 and 308 °C, respectively. The cyclic acetal group in the pendants of the polymer of 1 could be converted to the corresponding two hydroxy groups in a 65% yield by an acid‐catalyzed hydrolysis reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4855–4866, 2007 相似文献
5.
Tamotsu Hashimoto Hideaki Aizawa Toshiyuki Kodaira 《Macromolecular rapid communications》1995,16(7):521-526
Hydroxy-terminated telechelic poly(2-chloroethyl vinyl ether) (poly(CEVE)) was synthesized by water-based end-capping reaction of living poly(CEVE) with the initiating system CH3CHCl OCH2CH2 OCOCH3/ZnCl2 in CH2Cl2 at −40°C and subsequent end-group transformation of the acetate (α-end) and aldehyde (ω-end) groups into hydroxy groups. The obtained polymers possess controlled molecular weights and narrow molecular weight distributions. 相似文献
6.
The cationic polymerization of vinyl ethers initiated by CH3-CH(OR)(I) / R4N+A− (R = Alkyl, A− = ClO4−, BF4−, PF6−, I−, NO3−) shows the characteristics of a living polymerization. The rate of polymerization is a function of the solvent polarity, the temperature, the type and concentration of the ammonium salt. The experimental data can be explained on the basis of the secondary salt effect overlapped by some dipol-dipol interactions of the chain end and the added salt. Functionalization of the chain end with thermolabile azo functions yields polymeric initiator which was applied for the synthesis of blockcopolymers. Vinyl ethers functionalized with furylacrylic ester groups were polymerized and crosslinked via [2+2] cycloaddition. 相似文献
7.
This paper reviews the recent progress in our research on the living cationic polymerization of vinyl compounds by the hydrogen iodide/iodine (HI/I2) initiating system, with emphasis on its scope, mechanism, and applications to new polymer synthesis. The scope of the living cationic polymerization has been expanded to include vinyl ethers, propenyl ethers, unsaturated cyclic ethers, and styrene derivatives as monomers. The initiation/propagation mechanism was discussed on the basis of recent direct analysis on the living system by NMR and UV/visible spectroscopy. The proposed mechanism involves a quantitative formation of Hl-vinyl ether adduct [CH3-CH(OR)-I; l] that is by itself incapable of initiating polymerization. In the presence of iodine, however, the CH-I bond of l is electrophilically activated by iodine and living propagation occurs via the insertion of vinyl ether to the activated CH-I bond. Such living polymerizations were found to proceed in not only nonpolar but polar solvents (CH2Cl2) as well. Quenching the living end with amines gave polymers capped with an amino group that in turn enabled us to determine the living end concentration. Applications of the HI/I2-initiated living process to the synthesis of new bifunctional and block polymers were also described. 相似文献
8.
Mitsuo Sawamoto Kenji Ebara Akio Tanizaki Toshinobu Higashimura 《Journal of polymer science. Part A, Polymer chemistry》1986,24(11):2919-2926
The cationic polymerization of cis- and trans-ethyl propenyl ethers (EPE, CH3? CH?CH? O? C2H5), initiated by a mixture of hydrogen iodide and iodine (HI/I2 initiator) at ?40°C in nonpolar media (toluene and n-hexane), led to living polymers of controlled molecular weights and a narrow molecular weight distribution (MWD) (M?w/M?n = 1.2–1.3). The geometrical isomerism of the monomer did not affect the living character of the polymerization. 13C NMR stereochemical analysis of the polymers showed that the living propagating end is sterically less crowded than nonliving counterparts generated by conventional Lewis acids (e.g., BF3OEt2). New block copolymers between EPE (cis or trans) and isobutyl vinyl ether were also prepared by sequential living polymerization of the two monomers. 相似文献
9.
Living cationic polymerization of azobenzene‐containing vinyl ether and its photoresponsive behavior
Tomohide Yoshida Shokyoku Kanaoka Sadahito Aoshima 《Journal of polymer science. Part A, Polymer chemistry》2005,43(21):5138-5146
The living cationic polymerization of 4‐[2‐(vinyloxy)ethoxy]azobenzene (AzoVE) was achieved with various Lewis acids in the presence of an ester as an added base. When Et1.5AlCl1.5 was used as a catalyst, the living polymerization system was controllable by UV irradiation as a result of cis and trans isomerization of the azobenzene side groups. Furthermore, an initiating system consisting of SnCl4 and EtAlCl2 realized fast living polymerization of AzoVE. The polymerization rate of this system was 3 orders of magnitude faster than that obtained with Et1.5AlCl1.5. Poly(4‐[2‐(vinyloxy)ethoxy]azobenzene) was soluble in a diethyl ether/hexane mixture at 25 °C but became insoluble upon irradiation with UV light. This phase‐transition behavior was sensitive and reversible upon irradiation with UV or visible light and reflected the change in polarity occurring with cis and trans isomerization of the azobenzene side groups in the polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5138–5146, 2005 相似文献
10.
Eleftheria Batagianni Arkadios Marathianos Aikaterini Koraki Andreas-Philippos Maroudas 《高分子科学杂志,A辑:纯化学与应用化学》2016,53(3):140-151
The cationic polymerization of ethyl, n-butyl and iso-butyl vinyl ether, EVE, BVE and iBVE, respectively, was efficiently conducted using bis(η5-cyclopentadienyl)dimethyl hafnium, Cp2HfMe2, or bis(η5-cyclopentadienyl)dimethyl zirconium, Cp2ZrMe2 in combination with either tris(pentafluorophenyl)borate, B(C6F5)3, or tetrakis(pentafluorophenyl)borate dimethylanilinum salt, [B(C6F5)4]?[Me2NHPh]+, as initiation systems. The evolution of polymer yield, molecular weight and molecular weight distribution with time was examined. In addition, the influence of the initiating system, the monomer and the reaction conditions on the control of the polymerization was studied. Furthermore, statistical copolymers of EVE with BVE were prepared employing Cp2HfMe2 and [B(C6F5)4]?[Me2NHPh]+ as the initiation system. The reactivity ratios were estimated using both linear graphical and non-linear methods. Structural parameters of the copolymers were obtained by calculating the dyad sequence fractions and the mean sequence length, which were derived using the monomer reactivity ratios. The glass transition temperatures, Tg, of the copolymers were measured by Differential Scanning Calorimetry, DSC, and the results were compared with predictions based on several theoretical models. The kinetics of thermal decomposition of the copolymers along with the respective homopolymers was studied by thermogravimetric analysis within the framework of the Ozawa-Flynn-Wall and Kissinger methodologies. 相似文献
11.
Alexander V. Lubnin Joseph P. Kennedy 《Journal of polymer science. Part A, Polymer chemistry》1993,31(11):2825-2834
The MeCH(O-i-Bu)Cl/TiCl4/MeCONMe2 initiating system was found to induce the rapid living carbocationic polymerization (LC⊕Pzn) of isobutyl vinyl ether (IBuVE) at ?100°C. Degradation by dealcoholation which usually accompanies the polymerization of alkyl vinyl ethers by strong Lewis acids is “frozen out” at this low temperature and poly(isobutyl vinyl ether)s (PIBuVEs) with theoretical molecular weights up to ca. 40,000 g/mol (calculated from the initiator/monomer input) and narrow molecular weight distributions (M?w/M?n ≤ 1.2) are readily obtained. According to 13C-NMR spectroscopy, PIBuVEs prepared by living polymerization at ?100°C are not stereoregular. The MeCH(O-i-Bu)Cl/TiCl4 combination induces the rapid LC⊕Pzn of IBuVE even in the absence of N,N-dimethylacetamide (DMA). The addition of the common ion salt, n-Bu4NCl to the latter system retards the polymerization and meaningful kinetic information can be obtained. The kinetic findings have been explained in terms of TiCl4. IBuVE and TiCl4 · IBuVE and TiCl4 · PIBuVE complexes. The HCl (formal initiator)/TiCl4/DMA combination is the first initiating system that can be regarded to induce the LC⊕Pzn of both isobutylene (IB) and IBuVE. Polyisobutylene (PIB)–PIBuVE diblocks were prepared by sequential monomer addition in “one pot” by the 2-chloro-2,4,4-trimethylpentane (TMP-Cl)/TiCl4/DMA initiating system. Crossover efficiencies are, however, below 35% because the PIB⊕ + IBuVE → PIB-b-PIBuVE⊕ crossover is slow. © 1993 John Wiley & Sons, Inc. 相似文献
12.
Tamotsu Hashimoto Hiroshi Ibuki Mitsuo Sawamoto Toshinobu Higashimura 《Journal of polymer science. Part A, Polymer chemistry》1988,26(12):3361-3374
Cationic polymerization of 2-vinyloxyethyl phthalimide ( 1 ) in CH2Cl2 at ?15°C with hydrogen iodide/iodine (HI/I2) as initiator led to living polymers of a narrow molecular weight distribution (M?w/M?n = 1.1–1.25). The number-average molecular weight of the polymers was in direct proportion to monomer conversion and could be controlled in the range of 1000–6000 by regulating the 1 /HI feed ratio. However, when a fresh monomer was supplied to the completely polymerized reaction mixture, the molecular weight of the polymers was not directly proportional to monomer conversion. The polymerization of 1 by boron trifluoride etherate (BF3OEt2) in CH2Cl2 at ?78°C gave polymers with relatively high molecular weight (M?w > 20,000) and broad molecular weight distribution (M?w/M?n ~ 2). The HI/I2-initiated polymerization of 1 was an order of magnitude slower than that of ethyl vinyl ether, probably because of the electron-withdrawing phthalimide pendant. Hydrazinolysis of the imide functions in poly( 1 ) gave a water-soluble poly(vinyl ether) ( 3 ) with aliphatic primary amino pendants. 相似文献
13.
14.
Shohei Ida Makoto Ouchi Mitsuo Sawamoto 《Journal of polymer science. Part A, Polymer chemistry》2010,48(6):1449-1455
We first achieved the living cationic polymerization of azide‐containing monomer, 2‐azidoethyl vinyl ether (AzVE), with SnCl4 as a catalyst (activator) in conjunction with the HCl adduct of a vinyl ether [H‐CH2CH(OR)‐Cl; R ? CH2CH2Cl, CH2CH(CH3)2]. Despite the potentially poisoning azide group, the produced polymers possessed controlled molecular weights and fairly narrow distributions (Mw/Mn ~ 1.2) and gave block polymers with 2‐chloroethyl vinyl ether. The pendent azide groups are easily converted into various functional groups via mild and selective reactions, such as the Staudinger reduction and copper‐catalyzed azide‐alkyne 1,3‐cycloaddition (CuAAC; a “click” reaction). These reactions led to quantitative pendent functionalization into primary amine (? NH2), hydroxy (? OH), and carboxyl (? COOH) groups, at room temperature and without any acidic or basic treatment. Thus, poly(AzVE) is a versatile precursor for a wide variety of functional vinyl ether polymers with well‐defined structures and molecular weights. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1449–1455, 2010 相似文献
15.
Etsu Takeuchi Tamotsu Hashimoto Mitsuo Sawamoto Toshinobu Higashimura 《Journal of polymer science. Part A, Polymer chemistry》1989,27(10):3303-3314
Ethyl 2-(vinyloxy)ethoxyacetate ( 4 ; CH2?CH? OCH2CH2OCH2? COOC2H5), a vinyl ether having both carboxylic acid ester and oxyethylene unit in its pendant, afforded well-defined living polymers when polymerized by the hydrogen iodide/iodine (HI/I2) initiating system in toluene at ?40°C. The polymers possessed a narrow molecular weight distribution (M w/M n ≤ 1.15), and their molecular weight (M n) increased proportionally to monomer conversion or the molar ratio of the monomer to hydrogen iodide. The polymer molecular weight also increased upon addition of a fresh feed of the monomer to a completely polymerized reaction mixture. Polymers of high molecular weights (M n > 5 × 105) and broad molecular weight distributions were obtained by BF3OEt2 in toluene at ?40°C. Polymerization rate of 4 with HI/I2 is ca. 100 times greater than that of the corresponding alkyl vinyl ether, and thus 4 was found to be one of the most reactive vinyl ethers thus far studied. Alkaline hydrolysis of the pendant ester groups of the polymers gave a vinyl ether-based polymeric carboxylic acid 6 with a narrow molecular weight distribution. 相似文献
16.
Sadahito Aoshima Takashi Fujisawa Eiichi Kobayashi 《Journal of polymer science. Part A, Polymer chemistry》1994,32(9):1719-1728
The living cationic polymerization of isobutyl vinyl ether (IBVE) was investigated in the presence of various cyclic and acyclic ethers with 1-(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3, 1 ]/EtAlCl2 initiating system in hexane at 0°C. In particular, the effect of the basicity and steric hindrance of the ethers on the living nature and the polymerization rate was studied. The polymerization in the presence of a wide variety of cyclic ethers [tetrahydrofuran (THF), tetrahydropyran (THP), oxepane, 1,4-dioxane] and cyclic formals (1,3-dioxolane, 1,3-dioxane) gave living polymers with a very narrow molecular weight distribution (MWD) (M?ω/M?n ≤ 1.1). On the other hand, propylene oxide and oxetane additives resulted in no polymerization, whereas 1,3,5-trioxane gave the nonliving polymer with a broader MWD. The polymerization rates were dependent on the number of oxygen and ring sizes, which were related to the basicity and the steric hindrance. The order of the apparent polymerization rates in the presence of cyclic ether and formal additives was as follows: nonadditive ~ 1,3,5-trioxane ? 1,3-dioxane > 1,3-dioxolane ? 1,4-dioxane ? THP > oxepane ? THF ? oxetane, propylene oxide ? 0. The polymerization in the presence of the cyclic formals was much faster than that of the cyclic ethers: for example, the apparent propagation rate constant k in the presence of 1,3-dioxolane was 103 times larger than that in the presence of THF. Another series of experiments showed that acyclic ethers with oxyethylene units were effective as additives for the living polymerization with 1 /EtAlCl2 initiating system in hexane at 0°C. The polymers obtained in the presence of ethylene glycol diethyl ether and diethylene glycol diethyle ether had very narrow molecular weight distribution (M?ω/M?n ≤ 1.1), and the M?n was directly proportional to the monomer conversion. The polymerization behavior was quite different in the polymerization rates and the MWD of the obtained polymers from that in the presence of diethyl ether. These results suggested the polydentate-type interaction or the alternate interaction of two or three ether oxygens in oxyethylene units with the propagating carbocation, to permit the living polymerization of IBVE. © 1994 John Wiley & Sons, Inc. 相似文献
17.
Rozentsvet V. A. Kozlov V. G. Korovina N. A. Novakov I. A. 《Kinetics and Catalysis》2015,56(2):132-140
Kinetics and Catalysis - 1,3-Pentadiene cationic polymerization under the action of titanium tetrachloride-carboxylic acid (CF3COOH, CF3COOD, CCl3COOH, CHCl2COOH, CH2ClCOOH, CH3COOH, and... 相似文献
18.
Yoshiaki Terada Shokyoku Kanaoka Toshinobu Higashimura 《Journal of polymer science. Part A, Polymer chemistry》2000,38(1):229-236
Cationic polymerization of n‐butyl propenyl ether (BuPE; CH3CH CHOBu, cis/trans = 64/36) was examined with the HCl–IBVE (isobutyl vinyl ether) adduct/ZnCl2 initiating system at −15 ∼ −78 °C in nonpolar (hexane, toluene) and polar (dichloromethane) solvents, specifically focusing on the feasibility of its living polymerization. In contrast to alkyl vinyl ethers, the living nature of the growing species in the BuPE polymerization was sensitive to polymerization temperature and solvent. For example, living cationic polymerization of IBVE can be achieved even at 0 °C with HCl–IBVE/ZnCl2, whereas for BuPE whose β‐methyl group may cause steric hindrance ideal living polymerization occurred only at −78 °C. Another interesting feature of this polymerization is that the polymerization rate in hexane is as large as in dichloromethane, much larger than in toluene. A new method in determining the ratio of the living growing ends to the deactivated ones was developed with a devised monomer‐addition experiments, in which IBVE that can be polymerized in a living fashion below 0 °C was added to the almost completely polymerized solution of BuPE. The amount of the deactivated chain ends became small in hexane even at −40 °C in contrast to other solvents. Thus hexane turned out an excellent solvent for living cationic polymerization of BuPE. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 229–236, 2000 相似文献
19.
Takeshi Namikoshi Tamotsu Hashimoto Toshiyuki Kodaira 《Journal of polymer science. Part A, Polymer chemistry》2004,42(12):2960-2972
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004 相似文献
20.
Ben-Ami Feit Baruch Halak 《Journal of polymer science. Part A, Polymer chemistry》2002,40(13):2171-2183
The addition of dialkyl (R = Me or Et) carbonates to poly(oxyethylene)-based solid polymeric electrolytes resulted in enhanced ionic conductivities. Relatively high conductivities in lithium batteries with solutions of lithium salts in di(oligooxyethylene) carbonates such as R( OCH2 CH2 )nOC(O) O ( CH2CH2O )mR (R = Et, n = 1, 2, or 3, m = 0, 1, 2, or 3) and related carbonates were obtained. In this respect, related comb-shaped poly(oligooxyethylene carbonate) vinyl ethers of the type CH2CH(OR) were prepared [R = ( OCH2 CH2 )nOC(O) O ( CH2CH2O )mR′; (1) n = 2 or 3, m = 0, R′ = Et; (2) n = 2 or 3; m = 3, R′ = Me]. The direct preparation of derived target polymers of this class by polymerization of the corresponding vinyl ether-type monomers could not be achieved because of a rapid in situ decarboxylative decomposition of these monomers (as formed) during the final step of their synthesis. Instead, a prepolymer was prepared by a living cationic polymerization of CH2CH (OCH2CH2 )n O C(O) CH3 (n = 2 or 3). The hydrolysis of its pendant ester groups, followed by the reaction of the hydrolyzed prepolymer with each of several alkyl chloroformates of the type Cl C(O) O( CH2CH2O )mR′ (m = 0, 2, or 3, R′ = Me or Et) resulted in the corresponding target polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2171–2183, 2002 相似文献