首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk polymerization of vinylene carbonate using t-butylperoxypivalate at 40℃gave colourless, high molecular weight poly(vinylene carbonate) (PVCA). Solutions of PVCA in acetone and DMF are not stable at 25℃and this degradation was studied. From measurements in DMF with unfractionated PVCA a Mark-Houwink equation was obtained:  相似文献   

2.
Statistical copolymers 5 containing poly(2-dimethyloctylsilyl-1,4-phenylenevinylene) (DMOS-PPV) and poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) have been synthesized using the dehydrohalogenation condensation route. The copolymers show a shift of photoluminescence maxima to longer wavelengths as the proportion of the MEH-PV unit increases. This trend is accompanied by reduced efficiencies and lower turn-on voltages in single layer electroluminescent devices. Light-emitting electrochemical cells (LECs) have been prepared using a blend of DMOS-PPV 1 with poly(ethylene oxide)/lithium triflate and the homopolymer poly[2-methoxy-5-(triethoxymethoxy)-1,4-phenylene vinylene] (MTEM-PPV) 9 with lithium triflate. In comparison with single-layer devices which were fabricated using the homopolymers 1 and poly[2,5-bis(triethoxymethoxy)-1,4-phenylene vinylene] (BTEM-PPV) 10 , the LEC devices showed lower turn-on voltages.  相似文献   

3.
Diphenylaminobiphenylated stryl based alternating copolymers with phenyl or fluorene, which were expected to have a terphenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant and a phenyl/fluorene/phenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant, were synthesized by a Suzuki coupling reaction. The obtained copolymers were confirmed with various types of spectroscopy. The alternating copolymers showed good hole‐injection properties because of their low oxidation potential and good solubility and high thermal stability with a high glass‐transition temperature. The alternating copolymers showed blue emissions because of the adjusted conjugation lengths; the maximum wavelength was 460 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} and 487 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl] vinylene‐alt‐9,9‐dihexylfluorene}. The maximum brightness of indium tin oxide/poly(3,4‐ethylene dioxythiophene)/polymer/LiF/Al devices with poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} or poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐9,9‐dihexylfluorene} as the emitting layer was 250 or 1000 cd/m2, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 341–347, 2007  相似文献   

4.
A new series of 2,1,3‐benzothiadiazole (BT) acceptors with different conjugated aryl‐vinylene side chains have been designed and used to build efficient low‐bandgap (LBG) photovoltaic copolymers. Based on benzo[1,2‐b:3,4‐b′]dithiophene and the resulting new BT derivatives, three two‐dimensional (2D)‐like donor (D)–acceptor (A) conjugated copolymers have been synthesised by Stille coupling polymerisation. These copolymers were characterised by NMR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis and differential scanning calorimetry. UV/Vis absorption and cyclic voltammetry measurements indicated that their optical and electrochemical properties can be facilely modified by changing the structures of the conjugated aryl‐vinylene side chains. The copolymer with phenyl‐vinylene side chains exhibited the best light harvesting and smallest bandgap of the three copolymers. The basic electronic structures of D–A model compounds of these copolymers were also studied by DFT calculations at the B3LYP/6‐31G* level of theory. Polymer solar cells (PSCs) with a typical structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/copolymer:[6,6]‐phenyl‐C61(C71)‐butyric acid‐methyl ester (PCBM)/calcium (Ca)/aluminum (Al) were fabricated and measured under the illumination of AM1.5G at 100 mW cm?2. The results showed that the device based on the copolymer with phenyl‐vinylene side chains had the highest efficiency of 2.17 % with PC71BM as acceptor. The results presented herein indicate that all the prepared copolymers are promising candidates for roll‐to‐roll manufacturing of efficient PSCs. Suitable electronic, optical and photovoltaic properties of BT‐based copolymers can also be achieved by fine‐tuning the structures of the aryl‐vinylene side chains for photovoltaic application.  相似文献   

5.
The reaction of bis(4,7-tetrahydrothiopheniomethyl) benzofuran dibromide with aqueous tetramethylammonium hydroxide leads to a water-soluble polyelectrolyte which can be film cast and thermolytically eliminated to give poly(4,7-benzofuran vinylene) (PBFV). Subjection of bis(4,7-tetrahydrothiopheniomethyl) benzothiophene dibromide to the same reaction sequence gives poly(4,7-benzothiophene vinylene) (PBTV). UV-VIS studies show that PBFV has a band gap of 2.76 eV, while PBTV has a band gap of 2.92 eV. These polymers are members of a new class of conjugated poly (arylene vinylene)s, in which heterocyclic pseudoaromatic rings are fused onto a poly(1,4-phenylene vinylene) backbone. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
In this communication we demonstrate the dependence of the solute order parameter on the solute molecular weight for polymer solutes dissolved in liquid crystalline solvents. Using ensemble absorption polarization spectroscopy together with single molecule fluorescence polarization measurements, we have determined the order parameter of the conjugated polymer MEH-PPV (poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene]) in the liquid crystal 5CB (4-cyano-4-n-pentylbiphenyl) as a function of polymer chain length. Ensemble absorption polarization measurements agree well with results obtained by single molecule fluorescence polarization spectroscopy, indicating a large-scale ordering of the MEH-PPV solute in 5CB. These results demonstrate that the increasing number of defects for larger polymer weights inherently limits the alignment of the polymer solute.  相似文献   

7.
This article describes the synthesis and properties of the first poly(arylene‐vinylene)‐based sensitizers for application in dye‐sensitized solar cells (DSSC). The polymers were prepared by the Suzuki–Heck copolymerization of potassium vinyltrifluoroborate (PVTB) with a mixture of dibromoaryl comonomers designed to obtain macromolecules able to bind onto the photoelectrode by means of carboxyphenylene units. The copolymerization reactions were carried out in the presence of an excess of PVTB to lower the molecular weights of the polymers, which were obtained as soluble materials. The polymers poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene] ( P1 ), poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐(4,7‐benzothiadiazolylene)‐vinylene] ( P2 ), and poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐2,5‐thienylene‐vinylene] ( P3 ) were used in DSSC devices, obtaining conversion efficiencies up to 0.88% ( P3 ). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
The highly conjugated aromatic polymers, poly(2,5-dimethoxyphenylene vinylene) and poly(2,5-dimethylphenylene vinylene), were obtained from their water soluble, sulfonium salt precursor polymers. Films of these polymers were reacted with either AsF5 or I2 vapor. Poly(2,5-dimethoxyphenylene vinylene) showed increases in electrical conductivity of up to 14 to 15 orders of magnitude for these two dopants, while an 8 to 9 order of magnitude increase was observed for poly(2,5-dimethylphenylene vinylene) with the same dopants. The synthesis of the precursor polymers, the properties and elimination reactions of films of the precursors, the doping reactions, and the conductivities of the resulting phenylene vinylene films are discussed.  相似文献   

9.
A new series of copolymers with high brightness and luminance efficiency were synthesized using the Gilch polymerization method, and their electro‐optical properties were investigated. The weight‐average molecular weights (Mw) and polydispersities of the synthesized poly(9,9‐dioctylfluorenyl‐2,7‐vinylene) [poly(FV)], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [poly(m‐SiPhPV)], and poly[9,9‐di‐n‐octylfluorenyl‐2,7‐vinylene]‐co‐(2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylene vinylene)] [poly(FV‐com‐SiPhPV)] were found to be in the ranges of (8.7–32.6) × 104 and 2.3–5.4, respectively. It was found that the electro‐optical properties of the copolymers could be adjusted by controlling the feed ratios of the comonomers. Thin films of poly(FV), poly(m‐SiPhPV), and poly(FV‐com‐SiPhPV) were found to exhibit photoluminescence quantum yields between 21% and 42%, which are higher than those of MEH‐PPV. Light‐emitting diodes were fabricated in ITO/PEDOT/light‐emitting polymer/cathode configurations using either double layer (LiF/Al) or triple layer (Alq3/LiF/Al) cathode structures. The performance of the polymer light‐emitting diodes (PLEDs) with triple layer cathodes was found to be better than that of the PLEDs with double layer cathodes in poly(FV) and poly(FV‐com‐SiPhPV). The turn‐on voltages of the PLEDs were in the range of 4.5–6.0 V, with maximum brightness and luminance efficiency up to 9691 cd/m2 at 16 V and 3.27 cd/A at 13 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5062–5071, 2005  相似文献   

10.
In this study, a novel conjugated polymer, poly(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[def]phenanthrene‐2,6‐vinylene) (PCPPV) has been synthesized and characterized. For the polymerization, Gilch's reaction was applied for the first time with the cyclopenta[def]phenanthrene system. The absorption and emission spectra of PCPPV are red‐shifted about 40–50 nm due to the vinylene units when compared with those of poly(2,6‐(4,4‐bis(2‐ethylhex‐yl)‐4H‐cyclopenta[def]phenanthrene)) (PCPP). The solid‐state fluorescence is significantly broadened, possibly due to π–π interactions introduced by the phenanthrene and vinylene moieties. In solution, as the concentration of polar solvent increased, the photoluminescence (PL) intensity decreased due to quenching and aggregation by the interchain interactions between the conjugated backbones. After annealing the film at 80 °C, the PL and electroluminescence (EL) emission spectra exhibited also the quenching and aggregation effects indicating the interchain interactions of PCPPV. The large number of aromatic rings in a unit and the increased planarity achieved through introduction of vinylene units are able to give interchain interactions stronger than fluorene or phenylene units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5068–5077, 2009  相似文献   

11.
Yu S  Li F  Yin T  Liu Y  Pan D  Qin W 《Analytica chimica acta》2011,702(2):195-198
In this work, a novel all-solid-state polymeric membrane Pb(2+)-selective electrode was developed by using for the first time poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) as solid contact. To demonstrate the ion-to-electron transducing ability of MEH-PPV, chronopotentiometry and electrochemical impedance spectroscopy measurements were carried out. The proposed electrodes showed a Nernstian response of 29.1 mV decade(-1) and a lower detection limit of subnanomolar level. No water film was observed with the conventional plasticized PVC membrane. This work demonstrates a new strategy for the fabrication of robust potentiometric ion sensors.  相似文献   

12.
We have studied the electron/hole transport and recombination dynamics in blends of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene], (MDMO-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) at room temperature, as a function of laser excitation density and PCBM concentration. The experimental results of these studies indicate the important role played by hole-trap states in MDMO-PPV. Electron and hole transport are not balanced within the blend. PCBM is a less disordered material than MDMO-PPV and electron transport dominates the response of the solar cell device.  相似文献   

13.
In this work the phase behavior of [6,6]-phenyl C(61)-butyric acid methyl ester (PCBM) blends with different poly(phenylene vinylene) (PPV) samples is investigated by means of standard and modulated temperature differential scanning calorimetry (DSC and MTDSC) and rapid heat-cool calorimetry (RHC). The PPV conjugated polymers include poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV), High T(g)-PPV which is a copolymer, and poly((2-methoxy-5-phenethoxy)-1,4-phenylene vinylene) (MPE-PPV). Comparisons of these PPV:PCBM blends with regioregular poly(3-hexyl thiophene) (P3HT):PCBM blends are made to see the different component miscibilities among different blends. The occurrence of liquid-liquid phase separation in the molten state of MDMO-PPV:PCBM and High T(g)-PPV:PCBM blends is indicated by the coexistence of double glass transitions for blends with a PCBM weight fraction of around 80 wt%. This is in contrast to the P3HT:PCBM blends where no phase separation is observed. Due to its high cooling rate (about 2000 K min(-1)), RHC proves to be a useful tool to investigate the phase separation in PPV:PCBM blends through the glass transition of these crystallizable blends. P3HT is found to have much higher thermal stability than the PPV samples.  相似文献   

14.
Both fully conjugated polymer poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene‐alt‐9,10‐anthrylene vinylene] [poly(MEHPV‐AV)] and conjugated/nonconjugated block copolymers poly(alkanedioxy‐2‐methoxy‐1,4‐phenylene‐1,2‐ethenylene‐9,10‐anthrylene‐1,2‐ehthenylene‐3‐methoxy‐1,4‐phenylene)[poly(BFMPx‐AV), (x = 4, 8, and 12)] were synthesized by Horner–Emmons reaction utilizing potassium tert‐butoxide. Of these synthesized polymers poly(BFMP4‐AV) and poly(BFMP8‐AV), which has four and six methylene groups as solubility spacer in the main chain exhibited liquid crystalline to isotropic transition in addition to the two first order transitions. Light‐emitting diode (LED)s made from the organic solvent soluble poly(BFMP12‐AV) as emitting layer showed blue shift in the emission spectrum compared to the one made from fully conjugated poly(MEHPV‐AV). Although poly(BFMP12‐AV) had higher barrier to the electron injection from cathode than poly(MEHPV‐AV), the luminance efficiency of LED made from poly(BFMP12‐AV) was about 25 times higher than the one made from poly(MEHPV‐AV), which had fully conjugated structure. LEDs fabricated by both poly(BFMP12‐AV) and poly(MEHPV‐AV) exhibited Stoke's shift in the range of 155 to 168 nm from the absorption maximum due to the excimer formation between the ground and excited state anthracene groups. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3173–3180, 2000  相似文献   

15.
Modifications of the optical properties of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] induced by fluorination of the vinylene units are investigated by means of time dependent density functional theory (TD-DFT) calculations and spectroscopic measurements in solution. The energy of the main absorption peak is blue-shifted by more than 0.8 eV in the fluorinated polymers. TD-DFT excitation energies for non-fluorinated and fluorinated oligomer structures of increasing number of monomers, employing fully relaxed geometries, are compared to the experimental absorption energies of the polymers. We found that the measured large blue-shift induced by the fluorination of the vinylene units is not caused by the electron-withdrawing effect of the fluorine substituents but it is related to a steric effect. The inter-monomer torsional angle of the fluorinated structures increases above 50 degrees , while in the non-fluorinated systems it is below 20 degrees . Further insight into the origin of the large blue-shift of the excitation energies is gained by a detailed analysis of the torsional potentials of non-fluorinated and fluorinated dihydroxystilbene. While for planar geometries the energy gap increases due to fluorination, it decreases for highly distorted geometries. In addition, we found that the torsional potential of dihydroxystilbene is rather flat, meaning that different isomers might, e.g., in the solid state, coexist.  相似文献   

16.
[reaction: see text] We have developed a convenient synthesis of tetraalkoxyphenanthrene derivatives and demonstrated their use to form luminescent conjugated oligomers and polymers. Palladium-catalyzed cross-coupling reactions of 2,7-diiodo-3,6-dimethoxy-9,10-di(2-ethylhexyloxy)phenanthrene produced high molecular weight poly(p-phenylene ethynylene)s and low molecular weight poly(p-phenylene vinylene)s. These new polymers, which are luminescent in the solid state and in solution, may be useful for developing LED or solar cell devices, or in chemical sensors.  相似文献   

17.
We present the results of valence effective hamiltonian (VEH) band structure calculations on stereoregular block copolymers of poly(thienylene vinylene) and poly(pyrrylene vinylene). We have examined the evolution of the electronic properties as a function of the extension and distribution of the block copolymer sequences. In both cases, the electronic-properties deviate from a linear evolution as a consequence of the localization of both HOCO and LUCO.  相似文献   

18.
New conjugated copolymers of quinoxaline (AQ) and thienopyrazine (ATP) with vinylene (V) or ethynylene (E), poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐quinoxaline vinylene] (PAQV), poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐quinoxaline ethynylene)] (PAQE), poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐thieno[3,4‐b]pyrazine vinylene] (PATPV), and poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐thieno[3,4‐b]pyrazine ethynylene] (PATPE), were successfully synthesized by Stille coupling reaction. The optical band gaps of the PAQV, PAQE, PATPV, and PATPE were 1.86, 2.00, 0.88, and 0.90 eV, respectively, whereas the electrochemical band gaps were 1.99, 2.06, 1.00, and 1.06 eV, respectively. The reduced steric hindrance by the incorporation of the V or E linkage or the intramolecular charge transfer between the acceptor and the V or E linkage led to the small band gap. The AQ/ATP‐vinylene copolymers exhibited much higher vis/near infrared absorption intensity than the AQ/ATP‐ethynylene suggested the stronger π–π* transition intensity in the former and led to better charge‐transporting characteristics. The saturation field‐effect hole mobilities of the PATPV were 2.1 × 10?3, 1.7 × 10?2, and 1.1 × 10?2 cm2 V?1 s?1 on bare, octyltrichlorosilane (OTS)‐treated, and octadecyltrichlorosilane(ODTS)‐treated SiO2, respectively, with on‐off current ratios of 35, 6.02 × 102, and 7.56 × 102. On the other hand, the estimated field‐effect transistor hole mobility of the PATPE was in the range of 1.7 × 10?6–8.1 × 10?4 cm2 V?1 s?1, which was significantly smaller than those of the PATPV. The small band gaps and high charge carrier mobility of the prepared copolymers suggested their potential applications for near‐infrared electronic and optoelectronic devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 74–81, 2010  相似文献   

19.
In this work, a novel all-solid-state polymeric membrane Pb2+-selective electrode was developed by using for the first time poly(2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) as solid contact. To demonstrate the ion-to-electron transducing ability of MEH-PPV, chronopotentiometry and electrochemical impedance spectroscopy measurements were carried out. The proposed electrodes showed a Nernstian response of 29.1 mV decade−1 and a lower detection limit of subnanomolar level. No water film was observed with the conventional plasticized PVC membrane. This work demonstrates a new strategy for the fabrication of robust potentiometric ion sensors.  相似文献   

20.
The presence of cis‐vinylene bonds in Gilch‐polymerized poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylene vinylene] is reported. Through fractionation, species with a weight‐average molecular weight of less than 37,000 exhibited an abnormal blueshift of photoluminescence spectra in toluene solutions, and this was attributed to the presence of cis‐vinylene bonds, as verified by NMR spectroscopy. Surprisingly, the fractionated species (~1 wt %) with a weight‐average molecular weight of 5000 were mostly linked by the cis‐vinylene bonds. The concentration decreased with the molecular weight until a molecular weight of 37,000 was reached; at that point, the polymer chains contained mainly trans‐vinylene bonds. Obviously, the formation of cis‐vinylene bonds strongly inhibited the growth of polymer chains during Gilch polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2520–2526, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号