首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the bulk radical polymerization of methyl methacrylate and the structure and properties (physicomechanical and thermomechanical, as well as diffusion and sorption) of the polymers were examined in relation to the amount of low-molecular-weight poly(methyl methacrylate) added.  相似文献   

2.
Methyl methacrylate (MMA) was polymerized by radical initiation at 25°C in DMF in the presence of preformed isotactic PMMA (iMA) with about 90% isotactic triads and different M?v's, viz., iMA-1: 7.2 × 105; iMA-2, 5.0 × 105; iMA-3, 3.5 × 105; iMA-4, 1.25 × 105; and iMA-5, 1.15 × 105. The MMA:iMA ratio was 6:1. The collected polymers were separated into two fractions by extraction with boiling acetone and characterized by 60 MHz NMR. It is found that the M?v of the polymer formed ran parallel to the M?v of iMA. In all cases syndiotactic PMMA (s-PMMA) was produced which associated with the isotactic substrate to form acetone-insoluble stereocomplexes. The syndiotactic polymers probably consist of long syndiotactic and heterotactic sequences. The syndiotacticity decreased with conversion and was generally highest in the presence of iMA-1. With iMA-1 even the formation of some additional i-PMMA (in the acetone-insolubles) was indicated, especially in the later stages of the polymerization. Characterization of the acetone-soluble fractions indicated that i,s-stereoblock polymers were also produced, of which the persistence ratios ρ increased with the M?v of iMA. From these results it is concluded that this reaction differs from the conventional radical polymerization and can be considered a stereospecific replica polymerization, the driving force being the strong tendency of i- and s-PMMA to associate. The formation of i,s-stereoblock polymers and additional i-PMMA indicates that s-PMMA in its turn can also act as a polymer matrix.  相似文献   

3.
4.
Poly(methyl methacrylate) particles having hollow structures were produced by water-in-oil-in-water (W/O/W) emulsion polymerization where sorbitan monooleate (Span80) was used as a primary surfactant and sodium laurylsulfate and Glucopen (APG, polypeptide derivative) were used as secondary surfactants. Urethane acrylate having a molecular structure with a hard segment in the molecular backbone, a long soft segment in the middle, and vinyl groups at both ends was employed as a reactive viscosity enhancer. At low concentration of urethane acrylate, only a few particles contained a void in the polymer phase. However, as the concentration of urethane acrylate increased, the number of the particles containing the void increased. This was because urethane acrylate increased the viscosity of the monomer mixture and helped to form the stable W/O/W emulsion droplets, which possibly restricted droplet coalescence during emulsion polymerization. Moreover, at high concentration of urethane acrylate (above 7 wt%), multi-hollow-structured particles were obtained. It is believed that the increase in the lyophilicity of the monomer mixture caused by urethane acrylate led to stronger interfacial activity of the primary surfactant (Span80) and finally resulted in many internal aqueous droplets. Received: 31 July 1998 Accepted: 13 October 1998  相似文献   

5.
Hydroxyl-, amine-, and lactone-end-functional poly(methyl methacrylate)s (PMMA) were prepared with controlled molecular weights and Mw/Mn = 1.06–1.19 via group transfer polymerization. This was achieved by the electrophilic termination of silyl ketene acetal ended PMMAs with benzaldehyde, N-trimethylsilyl benzaldimine, and 5,6-dihydro-2H-pyran-2-one, respectively. The number-average degree of functionalization, as determined by NMR/SEC, was in the range of 0.70–0.85. A Lewis acid was used for terminating silyl ketene acetal ended PMMA with N-trimethylsilyl benzaldimine, whereas tetra-n-butyl ammonium bibenzoate was used in the case of benzaldehyde and 5,6-dihydro-2H-pyran-2-one. MALDI-TOF MS analysis of the end-functional polymers indicated the competing formation of cyclic end groups due to a back-biting reaction along with end-functional PMMAs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2514–2531, 2007  相似文献   

6.
The polymerization of methyl methacrylate within solid matrices of stereoregular poly(methyl methacrylate) has been studied by proton NMR and wide angle X-ray diffraction. The semi-crystalline isotactic (i-) PMMA matrix was synthesized in the laboratory by anionic polymerization initiated by phenylmagnesium bromide, and the syndiotactic (s-) PMMA matrix was synthesized through a Ziegler–Natta reaction. Matrix polymerization of the monomer was initiated through the redox activation of benzoyl peroxide with N,N-dimethyl-p-toluidine. NMR measurements of triad distributions in matrix-polymerized chains suggest that the well-known stereospecific replica polymerization in PMMA (syndiotactic sequences promote isotactic sequences and vice versa) plays only a limited role in the systems studied. Experimental results indicate that chains grown within the i-PMMA or s-PMMA solid matrices have greater degrees of configurational disorder. The greater concentration of atactic triads in these chains could be the result of limited free volume or steric effects during polymerization in a highly condensed environment. X-ray diffraction studies of solution cast blends of isotactic PMMA and PMMA with conventional tacticity reveal some crystallinity with a structure characteristic of the stereocomplex formed by isotactic and syndiotactic PMMA from suitable solvents. Evidence was obtained for the presence of this complex in solidified mixtures of the i-PMMA solid matrix and liquid monomer. This observation is an example of special intermolecular structures that can form under conditions of in situ growth of chains within a pre-polymerized matrix.  相似文献   

7.
Chen J  Lin Y  Chen G 《Electrophoresis》2007,28(16):2897-2903
In this report, a method based on the redox-initiated polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips. MMA containing 2-2'-azo-bis-isobutyronitrile was allowed to prepolymerize in a water bath to form a viscous prepolymer solution that was subsequently mixed with MMA containing a redox-initiation couple of benzoyl peroxide/N,N-dimethylaniline. The dense molding solution was sandwiched between a silicon template and a piece of 1-mm-thick PMMA plate. The polymerization could complete within 50 min under ambient temperature. The images of raised microfluidic structures on the silicon template were precisely replicated into the synthesized PMMA substrate during the redox-initiated polymerization of the molding solution. The chips were subsequently assembled by the thermal bonding of the channel plates and the covers. The new fabrication approach obviates the need for special equipment and significantly simplifies the process of fabricating PMMA microdevices. The attractive performance of the novel PMMA microchips has been demonstrated in connection with contactless conductivity detection for the separation and detection of ionic species.  相似文献   

8.
The adsorption and electron irradiation of methyl methacrylate (MMA) on a Ru(1010) surface have been studied using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and low energy ion scattering. TPD analysis indicates that a monolayer of MMA chemisorbs and dissociates on the Ru(1010) surface. The reaction products observed upon heating include H(2), CO, CO(2), and a small amount of MMA. Physisorbed multilayers of MMA desorb at temperatures around 170 K. Electron irradiation of physisorbed MMA at 140 K leads to a modification of the MMA film: The XPS spectra show an increase in thermal stability of the film with retention of the MMA structure, and indicate that electron irradiation induces polymerization. An increase in the electron bombardment fluence induces a degradation of the formed polymerized species and leads to the accumulation of carbon on the Ru surface. These results are relevant to the accumulation of carbon on surfaces of Ru films that serve as capping layers on MoSi multilayer mirrors used in extreme ultraviolet lithography.  相似文献   

9.
10.
The polymerization of methyl methacrylate was carried out in water at various concentrations of sodium bisulfite, ferric oxide, and methyl methacrylate at 30, 40, and 50°C. The effect of ferric oxide on the rate of polymerization was studied at 50°C. Rates of polymerization increased in the presence of ferric oxide. For example, the rate of polymerization increased from 3.4 × 10?5 mole/l.-sec to 11.8 × 10?5 mole/l.-sec when the ferric oxide concentration was varied from 0 to 15 g/l. water. The molecular weight of the polymer decreased from an average of 1.4 × 106 in the absence of ferric oxide to 2.8 × 105 when the ferric oxide was present. The variation of molecular weight of the polymers with temperature and conversion was studied. At a fixed conversion of 80%, the average molecular weight decreased from 3.4 × 105 at 30°C to 2.2 × 105 at 50°C. The average molecular weight was also found to increase with increasing monomer and initiator concentrations. It increased from 8.1 × 104 to 5.3 × 105 and from 3.4 × 105 to 8.9 × 105 as the initiator and monomer concentrations increased from 0.01 to 0.05 mole/l. and from 0.235 to 0.705 mole/l., respectively. The apparent energy of activation for the polymerization was found to be 15.6 and 9.7 kcal/mole in absence and in presence of ferric oxide, respectively.  相似文献   

11.
Crosslinked poly(ethylene oxide)-(PEO-N) is used as a novel medium for the anionic polymerization of methyl methacrylate (MMA) initiated by t-BuOK and ethyl-α-lithioisobutyrate (α-LiEtIB) in toluene. Comparative studies with linear poly(ethylene oxide)-(PEO-L) are performed as well. It is found that PEO-N effectively binds both initiators, and the polymerization process takes place mainly in the gel phase. PEO-N accelerates the polymerization process initiated by t-BuOK enabling the formation of high-molecular-weight polymers with high yields. Part of poly(methyl methacrylate)-(PMMA) remains in the gel particles yielding semi-interpenetrating networks with amphiphilic properties. PEO additives do not influence profoundly the course of the polymerization, initiated by α-LiEtIB. The influence of PEO-N on the proceeding of the polymerization is discussed in some detail.  相似文献   

12.
《Mendeleev Communications》2020,30(5):627-629
  1. Download : Download high-res image (53KB)
  2. Download : Download full-size image
  相似文献   

13.
The influence of stereoregular poly(methyl methacrylate) (PMMA) as a polymer matrix on the initial rate of radical polymerization of methyl methacrylate (MMA) has been measured between ?11 and +60°C using a dilatometric technique. Under proper conditions an increase in the relative initial rate of template polymerization with respect to a blank polymerization was observed. Viscometric studies showed that the observed effect could be related to the extent of complex formation between the polymer matrix and the growing chain radical. The initial rate was dependent on tacticity and molecular weight of the matrix polymer, solvent type and polymerization temperature. The accelerating effect was most pronounced (a fivefold increase in rate) at the lowest polymerization temperature with the highest molecular weight isotactic PMMA as a matrix in a solvent like dimethylformamide (DMF), which is known to be a good medium for complex formation between isotactic and syndiotactic PMMA. The acceleration of the polymerization below 25°C appeared to be accompanied by a large decrease in the overall energy and entropy of activation. It is suggested that the observed template effects are mainly due to the stereoselection in the propagation step (lower activation entropy Δ Sp?) and the hindrance of segmental diffusion in the termination step (higher activation energy Δ Et?) of complexed growing chain radicals.  相似文献   

14.
Anthracene-labelled poly(methyl methacrylate) (PMMA) was prepared via atom transfer radical polymerization (ATRP) where 9,10-bis(chloromethyl)anthracene and CuCl/2,2′-bipyridine were used as the initiator and catalyst, respectively. Both the linear increase of the number average molecular mass with conversion and the narrow polydispersity in the resulting polymers suggest that the polymerization proceeds in a “living” fashion and the anthracene molecule is incorporated into the middle of the polymer backbone. The initiation efficiency was low, ca. 13%, presumably due to some side reactions which compete with the initiation reaction.  相似文献   

15.
Two bis-(1-arylliminomethylenyl-2-oxy-naphthalen) nickel complexes (aryl = 2-methylphenyl, complex 1; aryl = 2,6-diisoproylphenyl, complex 2) were reacted with alkylaluminium in presence of equimolar PPh3 and tested as catalysts in methyl methacrylate (MMA) polymerization. The two nickel catalysts can initiate polymerization of MMA with good to high activity, the highest activity reaching 1.1 × 105 g PMMA/(mol Ni · h) by less bulky complex 1 at 0.8 mol/L of MMA, 400 of Al/Ni ratio and 0 °C. In addition, the structures of nickel complexes and polymerization conditions, such as monomer concentration, polymerization temperature and Al/Ni molar ratio on catalytic activity of polymerization have great influences on catalytic activity and product properties.  相似文献   

16.
17.
Emulsifier-free emulsion polymerization of methyl methacrylate in the presence of potassium persulfate initiator, taken in several different concentrations, at various pH values was studied with the aim to obtain colloidal crystals. The thermal properties of poly(methyl methacrylate) prepared by emulsifier-free emulsion polymerization, as the starting material for fabrication of photonic crystals, were examined in relation to the synthesis conditions.  相似文献   

18.
19.
Syndiotactic poly(methyl methacrylate) (st-PMMA) macromonomer having methacryloyl end group was prepared from st-PMMA living anion and separated into uniform macromonomers by means of supercritical fluid chromatography. A uniform macromonomer with the degree of polymerization of 32 was polymerized radically in benzene at 60°C. The uniform dimer, trimer and tetramer of the uniform macromonomer were isolated from the polymerization product by means of gel-permeation chromatography (GPC). The intrinsic viscosity ([η]) in tetrahydrofuran of these uniform comblike polymers was determined by GPC/differential viscometric analysis. The plot of logarithmic [η] against logarithmic molecular weight indicated that the trimer and tetramer assume a little shrinking molecular shape as compared with the unimer and dimer.  相似文献   

20.
It was first found that (diisopropylamido)bis(methylcyclopentadienyl)lanthanides (MeC5H4)2LnN(i-Pr)2(THF) (Ln = Yb ( 1 ), Er ( 2 ), Y ( 3 )) exhibit extremely high catalytic activity in the polymerization of methyl methacrylate. The reactions can be carried out over a quite broad range of polymerization temperatures from -78 to 40°C. The catalytic activity of the complexes increases with an increase of ionic radii of the metal elements, i.e. Y > Er > Yb. The results of GPC (gel permeation chromatography) indicate that the number-average molecular weights (Mn) of polymers obtained exceed 100 × 103 and the molecular weight distribution (Mw/Mn) becomes broad with the increase of temperature. Furthermore highly syndiotactic PMMA (87.7%) can be obtained by lowering the reaction temperature to −78°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1593–1597, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号