首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the fully anisotropicoverall tumbling motions and side groups internal rotation of ocotillol-type saponins separated from the leaves of Panax Quidquefolium L. are investigated by ~(13)C nuclear magnetic relaxation. The fully anisotropic overall tumbling motion model with methyl conformation jumps internal rotation among three equivalent sites is presented, and the spectral density function of this model is derived. The rotation rates for overall tumbling motions to ocotillol-type saponins (OTS) are computed by Woessner's fully anisotropic overall tumbling motion model, and the internal rotation rate and barrier for side groups in OTS are calculated using free diffusion internal rotation model, restriction diffusion internal rotation model and conformation jumps internal rotation model, respectively.  相似文献   

2.
The dipolar relaxation mechanisms in a side chain liquid crystalline polysiloxane have been studied by Thermally Stimulated Discharge Currents (t.s.d.c.) and by Dielectric Relaxation Spectroscopy (d.r.s.). The study was carried out in a wide temperature range covering the vitreous phase, the glass transition region and the liquid crystalline phase. Different discharges were observed in the t.s.d.c. spectrum of this polymer which were attributed, in the order of increasing temperature, to local non-cooperative motions probably involving internal rotations in the spacer and in the alkyl group of the mesogenic moiety, to the Brownian motions of the main chain associated with the glass transition and to motions involving reorientations of the components of the dipole moment of the mesogenic side group in the liquid crystalline phase. The dielectric relaxation spectrum, on the other hand, is dominated by two relaxation processes both of which are above the measured glass transition temperature and shows also a much broader and less intense relaxation below the glass transition temperature which is attributable to local motions along the side groups. It is emphasized that the comparison between the d.r.s. and the t.s.d.c. results is not straightforward and that more research work is needed in order to enable a clear attribution of the relaxation processes at the molecular level, and an unambiguous interpretation of the results obtained by the two techniques.  相似文献   

3.
The cooperative nature of protein substructure and internal motion is a critical aspect of their functional competence about which little is known experimentally. NMR relaxation is used here to monitor the effects of high pressure on fast internal motion in the protein ubiquitin. In contrast to the main chain, the motions of the methyl-bearing side chains have a large and variable pressure dependence. Within the core, this pressure sensitivity correlates with the magnitude of motion at ambient pressure. Spatial clustering of the dynamic response to applied hydrostatic pressure is also seen, indicating localized cooperativity of motion on the sub-nanosecond time scale and suggesting regions of variable compressibility. These and other features indicate that the native ensemble contains a significant fraction of members with characteristics ascribed to the recently postulated "dry molten globule". The accompanying variable side-chain conformational entropy helps complete our view of the thermodynamic architecture underlying protein stability, folding, and function.  相似文献   

4.
The two-body Slowly Relaxing Local Structure (SRLS) model was applied to (15)N NMR spin relaxation in proteins and compared with the commonly used original and extended model-free (MF) approaches. In MF, the dynamic modes are assumed to be decoupled, local ordering at the N-H sites is represented by generalized order parameters, and internal motions are described by effective correlation times. SRLS accounts for dynamical coupling between the global diffusion of the protein and the internal motion of the N-H bond vector. The local ordering associated with the coupling potential and the internal N-H diffusion are tensors with orientations that may be tilted relative to the global diffusion and magnetic frames. SRLS generates spectral density functions that differ from the MF formulas. The MF spectral densities can be regarded as limiting cases of the SRLS spectral density. SRLS-based model-fitting and model-selection schemes similar to the currently used MF-based ones were devised, and a correspondence between analogous SRLS and model-free parameters was established. It was found that experimental NMR data are sensitive to the presence of mixed modes. Our results showed that MF can significantly overestimate order parameters and underestimate local motion correlation times in proteins. The extent of these digressions in the derived microdynamic parameters is estimated in the various parameter ranges, and correlated with the time scale separation between local and global motions. The SRLS-based analysis was tested extensively on (15)N relaxation data from several isotropically tumbling proteins. The results of SRLS-based fitting are illustrated with RNase H from E. coli, a protein extensively studied previously with MF.  相似文献   

5.
The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side‐chain dynamics of the α‐helical sensory rhodopsin II and the β‐barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Despite their differing topologies, both proteins have a similar distribution of methyl‐bearing side‐chain motion that is largely independent of membrane mimetic. The methyl‐bearing side chains of both proteins are, on average, more dynamic in the ps–ns timescale than any soluble protein characterized to date. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect. Furthermore, the high conformational entropy could greatly influence the thermodynamics underlying membrane‐protein functions, including ligand binding, allostery, and signaling.  相似文献   

6.
The free volume and related mobility properties of substituted poly(p-phenylene) polymers are examined. The techniques used range from positron annihilation, dielectric relaxation, and dynamic mechanical spectroscopy to thermally stimulated currents. Fractional free volume is determined for the samples with different substituted side groups and related to the glass transition temperature. Bulkier groups lead to a greater fractional free volume and lower glass transition temperatures. Comparison of molecular relaxation times using the different characterization techniques demonstrates that there is strong coupling between motion of the main chain and the side groups, on which the dipoles reside. Intermolecular coupling between the main chains at the primary relaxation is shown in this work to be related to the nature of the side chains and resultant free volume, as are the temperature locations of local, secondary relaxations. A qualitative model describing the effect of regiochemistry on the motions and packing of these materials is also proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1465–1481, 1998  相似文献   

7.
8.
9.
NOESY and ROESY cross-peak intensities depend on internuclear distances and internal motion. Internal motion is usually ignored, and NOESY cross-peak intensities are interpreted in terms of internuclear distances only. Off-resonance ROESY experiments measure a weighted average of NOE and ROE. The weight can be described and experimentally set by an angle theta;. For large enough molecules, NOE and ROE have opposite signs. Therefore, each cross-peak intensity becomes zero for an angle theta;(0). For any sample, the maximum angle theta;(0) is determined by the overall motion of the molecule. Smaller theta;(0) values reflect the angular component of internal motions. Because individual cross-peaks are analyzed, the method evaluates internal motions of individual H,H vectors. The reduction of theta;(0) is largest for internal motions on a time scale of 100-300 ps. The sensitivity of theta;(0) for internal motions decreases with increasing molecular weight. We estimate that detecting internal motions will be practicable for molecules up to about 15 kDa. We describe a protocol to measure theta;(0) from a series of off-resonance ROESY spectra. For such a series, we describe the choice of experimental parameters, a procedure to extract theta;(0) from the raw data, and the interpretation of theta;(0) in terms of internal motions. In the small protein BPTI, we analyzed 75 cross-peaks. The precision of theta;(0) was 0.25 degrees, as compared to typical reductions of theta;(0) of 3 degrees. We found a well-defined maximum theta;(0) for cross-peaks in rigid parts of the molecule, which reflects the overall motion of the molecule. For BPTI, also many structurally important long-range cross-peaks appear rigid. The lower theta;(0) values of long-range contacts involving methyl groups are consistent with methyl rotation on the 25-ps time scale. The lower theta;(0) values of the flexible C-terminus and of flexible side chains translate into upper limits for the angular order parameter of 0.4 and 0.5-0.8, respectively. Off-resonance ROESY can monitor internal motions of H,H contacts that are used in a structure calculation. Because no isotope labeling is needed, off-resonance ROESY can be used to detect internal motions in a wide range of natural products.  相似文献   

10.
The spin-lattice relaxation time and the nuclear Overhauser enhancement were measured using Bruker AM 300 spectrometer operating at 75.5 MHz for 13C to investigate the molecular motional characteristics and its tacticity effect for tactic poly(2-hydroxyethyl methacrylate) (PHEMA) as a function of temperature in dimethyl sulfoxide and methanol solvents. The observed relaxation data have been analyzed for both backbone motion and methyl internal rotation according to the log-χ2 distribution model and the diamond-lattice model. The correlation times thus obtained for the molecular motions show that isotactic PHEMA is more flexible than syndiotactic counterpart. The syndiotactic PHEMA seems to have intramolecular hydrogen bonding which restricts the motion of C-2 carbon at temperatures below 35°C, whereas the isotactic one indicated no hydrogen bonding at all temperatures examined in this study. The methyl group of isotactic PHEMA shows a greater degree of freedom for the internal rotation than that of syndiotactic one. From the temperature dependence of correlation times, the activation energies for both backbone segmental motion and methyl internal rotation are obtained. The activation energies, 20 kJ/mol for backbone motion and 19 kJ/mol for methyl internal rotation, for isotactic PHEMA are substantially lower than the corresponding activation energies of 30 and 32 kJ/mol obtained for syndiotactic one. An examination of these energies indicates that methyl side group and backbone motions in tactic PHEMA are linked together.  相似文献   

11.
We present results obtained by dielectric spectroscopy in wide frequency (10(-2)-10(9) Hz) and temperature ranges on human hemoglobin in the three different solvents water, glycerol, and methanol, at a solvent level of 0.8 g of solvent/g of protein. In this broad frequency region, there are motions on several time-scales in the measured temperature range (110-370 K for water, 170-410 K for glycerol, and 110-310 K for methanol). For all samples, the dielectric data shows at least four relaxation processes, with frequency dependences that are well described by the Havriliak-Negami or Cole-Cole functions. The fastest and most pronounced process in the dielectric spectra of hemoglobin in glycerol and methanol solutions is similar to the alpha-relaxation of the corresponding bulk solvent (but shifted to slower dynamics due to surface interactions). For water solutions, however, this process corresponds to earlier results obtained for water confined in various systems and it is most likely due to a local beta-relaxation. The slowing down of the glycerol and methanol relaxations and the good agreement with earlier results on confined water show that this process is affected by the interaction with the protein surface. The second fastest process is attributed to motions of polar side groups on the protein, with a possible contribution from tightly bound solvent molecules. This process is shifted to slower dynamics with increasing solvent viscosity, and it shows a crossover in its temperature dependence from Arrhenius behavior at low temperatures to non-Arrhenius behavior at higher temperatures where there seems to be an onset of cooperativity effects. The origins of the two slowest relaxation processes (visible at high temperatures and low frequencies), which show saddlelike temperature dependences for the solvents water and methanol, are most likely due to motions of the polypeptide backbone and an even more global motion in the protein molecule.  相似文献   

12.
A general framework is presented for the interpretation of NMR relaxation data of proteins. The method, termed isotropic reorientational eigenmode dynamics (iRED), relies on a principal component analysis of the isotropically averaged covariance matrix of the lattice functions of the spin interactions responsible for spin relaxation. The covariance matrix, which is evaluated using a molecular dynamics (MD) simulation, is diagonalized yielding reorientational eigenmodes and amplitudes that reveal detailed information about correlated protein dynamics. The eigenvalue distribution allows one to quantitatively assess whether overall and internal motions are statistically separable. To each eigenmode belongs a correlation time that can be adjusted to optimally reproduce experimental relaxation parameters. A key feature of the method is that it does not require separability of overall tumbling and internal motions, which makes it applicable to a wide range of systems, such as folded, partially folded, and unfolded biomolecular systems and other macromolecules in solution. The approach was applied to NMR relaxation data of ubiquitin collected at multiple magnetic fields in the native form and in the partially folded A-state using MD trajectories with lengths of 6 and 70 ns. The relaxation data of native ubiquitin are well reproduced after adjustment of the correlation times of the 10 largest eigenmodes. For this state, a high degree of separability between internal and overall motions is present as is reflected in large amplitude and collectivity gaps between internal and overall reorientational modes. In contrast, no such separability exists for the A-state. Residual overall tumbling motion involving the N-terminal beta-sheet and the central helix is observed for two of the largest modes only. By adjusting the correlation times of the 10 largest modes, a high degree of consistency between the experimental relaxation data and the iRED model is reached for this highly flexible biomolecule.  相似文献   

13.
To elucidate the role of secondary structure in the immune response against alpha(2-->8)-linked polysialic acid, the capsular polysaccharide of Group B meningococci, we have investigated its solution dynamics by using specific models of molecular motion and hydrodynamic modeling to interpret experimental NMR data. (13)C-[(1)H] NMR relaxation times and steady-state NOE enhancements were measured for two aqueous solutions of alpha(2-->8)-linked sialic acid polysaccharides. Each contained a unique distribution of polysaccharide chain lengths, with average lengths estimated at 40 or 400 residues. Models for rigid molecule tumbling, including two based on helical conformations proposed for the polysaccharide,(31) could not explain the NMR measurements. In general for these helices, the correlation times for their overall tumbling that best account for the NMR data correspond to polysaccharide chains between 9 and 18 residues in length, far short of the average lengths estimated for either solution. The effects of internal motions incorporated into these helices was modeled with an effective correlation time representing helix tumbling as well as internal motion. This modeling demonstrated that even with extreme amounts of internal motion, "flexible helices" of 25 residues or more still could not produce the NMR measurements. All data are consistent with internal and segmental motions dominating the nuclear magnetic relaxation of the polysaccharide and not molecular tumbling. Statistical distributions of correlation times have been found specifically for the pyranose rings, linkage groups, and methoxy groups that can account for the measured relaxation times and NOE enhancements. The distributions suggest that considerable flexibility attends the polysaccharide in solution, and the ranges of motional frequencies for the linkage groups and pyranose rings are comparable. We conclude that the Group B meningococcal polysaccharide is a random coil chain in solution, and therefore, does not have antigenic epitopes dependent upon a rigid, ordered conformation.  相似文献   

14.
NMR spin relaxation retains a central role in the characterization of the fast internal motion of proteins and their complexes. Knowledge of the distribution and amplitude of the motion of amino acid side chains is critical for the interpretation of the dynamical proxy for the residual conformational entropy of proteins, which can potentially significantly contribute to the entropy of protein function. A popular treatment of NMR relaxation phenomena in macromolecules dissolved in liquids is the so-called model-free approach of Lipari and Szabo. The robustness of the mode-free approach has recently been strongly criticized and the remarkable range and structural context of the internal motion of proteins, characterized by such NMR relaxation techniques, attributed to artifacts arising from the model-free treatment, particularly with respect to the symmetry of the underlying motion. We develop an objective quantification of both spatial and temporal asymmetry of motion and re-examine the foundation of the model-free treatment. Concerns regarding the robustness of the model-free approach to asymmetric motion appear to be generally unwarranted. The generalized order parameter is robustly recovered. The sensitivity of the model-free treatment to asymmetric motion is restricted to the effective correlation time, which is by definition a normalized quantity and not a true time constant and therefore of much less interest in this context. With renewed confidence in the model-free approach, we then examine the microscopic distribution of side chain motion in the complex between calcium-saturated calmodulin and the calmodulin-binding domain of the endothelial nitric oxide synthase. Deuterium relaxation is used to characterize the motion of methyl groups in the complex. A remarkable range of Lipari-Szabo model-free generalized order parameters are seen with little correlation with basic structural parameters such as the depth of burial. These results are contrasted with the homologous complex with the neuronal nitric oxide synthase calmodulin-binding domain, which has distinctly different thermodynamic origins for high affinity binding.  相似文献   

15.
(15)N and (13)C NMR experiments were applied to conduct a comparative study of a cold shock protein (Csp) in two states-lyophilized powder and a protein embedded in a glassy trehalose matrix. Both samples were studied at various levels of rehydration. The experiments used (measuring relaxation rates R(1) and R(1ρ), motionally averaged dipolar couplings and solid state exchange method detecting reorientation of the chemical shift anisotropy tensor) allow obtaining abundant information on the protein structural features and internal motions in a range of correlation times from nanoseconds to seconds. The main results are: (a) the trehalose coating makes the protein structure more native in comparison with the dehydrated lyophilized powder, however, trehalose still cannot remove all non-native hydrogen bonds which are present in a dehydrated protein; (b) trehalose has an appreciable effect on the internal dynamics: the motion of the backbone N-H groups in the nanosecond and microsecond time scales becomes slower while the motional amplitude remains constant; (c) upon adding water to the Csp-trehalose mixture, water molecules accumulate around proteins forming a layer between the protein surface and the trehalose matrix. The protein dynamics become faster, however, not as fast as in the fully hydrated state; (d) the hydration response of dynamics of the NH and CH(CH(2)) groups in a protein is qualitatively different: upon increasing protein hydration, the correlation times of the N-H motions become shorter and the amplitude remains stable, and for CH(CH(2)) groups the motional amplitude increases and the correlation times do not change. This can be explained by a different ability of the NH and CH(CH(2)) groups to form hydrogen bonds.  相似文献   

16.
Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism.  相似文献   

17.
18.
The temperature transitions for a series of flexible polymers containing propylene units were studied by dynamic mechanical spectroscopy. It was found that the gradual activation of the local motion of different structural units involved in polymers occurs with increasing temperature. Initially, the rotation of the side groups, such as side methyl groups, is activated and on further heating the main chain structural units show their local motions. It is important that the temperature interval of the appearance of the local motion of each structural unit is almost independent of the presence of other structural units. Accordingly, the polymers investigated can be divided into two groups. The activation of the local motion of the most rigid structural unit determines the glass transition in the first group of polymers. The glass transition of the polymers of the second group takes place at a higher temperature which depends on the content of side methyl groups and the intermolecular interaction. The increased influence of both these factors on the cooperative amorphous motion of polymers of the second group leads to their increased Tg values.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

19.
Both solid-state and solution NMR relaxation measurements are routinely used to quantify the internal dynamics of biomolecules, but in very few cases have these two techniques been applied to the same system, and even fewer attempts have been made so far to describe the results obtained through these two methods through a common theoretical framework. We have previously collected both solution 13C and solid-state 2H relaxation measurements for multiple nuclei within the furanose rings of several nucleotides of the DNA sequence recognized by HhaI methyltransferase. The data demonstrated that the furanose rings within the GCGC recognition sequence are very flexible, with the furanose rings of the cytidine, which is the methylation target, experiencing the most extensive motions. To interpret these experimental results quantitatively, we have developed a dynamic model of furanose rings based on the analysis of solid-state 2H line shapes. The motions are modeled by treating bond reorientations as Brownian excursions within a restoring potential. By applying this model, we are able to reproduce the rates of 2H spin-lattice relaxation in the solid and 13C spin-lattice relaxation in solution using comparable restoring force constants and internal diffusion coefficients. As expected, the 13C relaxation rates in solution are less sensitive to motions that are slower than overall molecular tumbling than to the details of global molecular reorientation, but are somewhat more sensitive to motions in the immediate region of the Larmor frequency. Thus, we conclude that the local internal motions of this DNA oligomer in solution and in the hydrated solid state are virtually the same, and we validate an approach to the conjoint analysis of solution and solid-state NMR relaxation and line shapes data, with wide applicability to many biophysical problems.  相似文献   

20.
The flexibility of protein structures is important in allowing the variety of motions, covering a wide range of magnitudes and frequencies, essential to biological activity. Protein flexibility is also implicated in denaturation, allowing proteins to take up nonactive conformations that have free energies close to that of the native state. High-frequency dielectric measurement can be used to study the flexibility of proteins by probing the relaxation of dipolar constituents of their structures. In this work, 14 hydrated globular proteins are investigated using this method. Four relaxation processes are identified, one of which, with a relaxation time of 19 ns, can be correlated with the sum of the number densities of protein glycine and alanine residues. A second with a relaxation time of 2 ns shows a dependence on the number of threonine residues. It is concluded that the dipolar peptide groups of the protein backbone associated with these residues are responsible for these dielectric responses, with the lower frequency dispersion being due to backbone mobility in the hydrophobic environment of the protein core and the higher frequency response being associated with mobility on the more hydrophilic protein surface. The correlation of protein backbone flexibility with particular side chains indicates that these protein motions are under the direct control of the amino acid sequence of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号