首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The chalcopyrite CuInS2 thin film was fabricated at 500 °C for 2 h by sulfurization of Cu‐In layers (as precursors) that were sulfurized in a glass tube with pure sulfur powder. The structural, morphological, and optical properties of CuInS2 thin films are characterized using X‐ray diffraction (XRD), field‐emission scanning electron microscope (FE‐SEM), and UV/Visible/NIR spectrophotometer. The study of UV/Visible/NIR absorption shows the band gap energy value of CuInS2 thin films is 1.5 eV. The XRD pattern shows the film is pure CuInS2; no other peaks, such as CuS or CuIn5S8 were observed. Furthermore, the surface of the CuInS2 film is compact characterized by FE‐SEM, which also shows the disappearance of CuS on the surface at 500 °C.  相似文献   

2.
The starting ternary compounds CuInS2 and CuSbS2 and alloys of the CuSbS2–CuInS2 system with the molar fractions of CuInS2 (x) equal to 0.05, 0.15, 0.25, 0.375, 0.50, 0.625, 0.75, 0.85, and 0.95 were prepared and the phase relations in this system were investigated by X‐ray powder diffraction, optical microscopy, scanning electron microscopy, and differential thermal analysis. It was shown that the T–x phase diagram of the CuInS2–CuSbS2 system has a eutectic character with the eutectic temperature of 807 K. The alloys of the CuSbS2–CuInS2 system with the molar fraction of CuInS2 in the range from 0.038 to 0.941 at room temperature are two‐phased, and the limits of solubility are 0.059 molar fractions for CuSbS2 in CuInS2 and 0.038 molar fractions for CuInS2 in CuSbS2.  相似文献   

3.
Single crystals of GdCa4O(BO3)3 (GdCOB) pure and doped with Eu concentration of 1 and 4 at% were grown by the Czochralski and micropulling‐down methods. The distribution of Eu ions in GdCOB crystals was uniform. The substitutions of Eu3+ in Gd, Ca(1) and Ca(2) cation sites and eventually formation Eu2+ have been investigated. The spectroscopic properties of crystals are compared with the properties of nanopowders obtained by sol‐gel method. Radioluminescence spectra of undoped GdCOB crystal show the characteristic emission of Gd3+ at about 312 nm, whereas this emission dramatically decreases in Eu‐doped crystals upon X‐ray excitation, as well as in Eu‐doped nanopowders excited in vacuum ultraviolet (VUV) region. The VUV excitation in the range 125‐333 nm for Eu‐doped samples leads to strong emission in red coming from the 5D0 multiplet of Eu3+, only. In the photoluminescence decay kinetics of 312 nm emissions substantial shortening and departure for single exponential decay in Eu‐doped samples is clearly observed. Higher Eu doping results in further acceleration of the decay. In undoped GdCOB crystal, the lifetime of the Gd3+ 6P7/2 multiplet is 2.79 ms. The Eu3+ 5D0 decay kinetics monitored at 613 nm are rather constant. Numerical fitting of fully exponential curves, reveals lifetimes 2.7 ms for nanopowder and 2.5 ms for single crystal. The results suggest that this material may be used as a red phosphor in plasma display panels in nanopowder form because of strong excitation band of Eu3+ luminescence in the 160‐200 nm regions. Contrary to nanopowder sample, such an excitation band, attributed to the Gd3+–O2– charge transfer was not observed in crystal obtained by the micropulling‐down method. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Photolimuniscence (PL) spectra of TlGaS2 layered crystals were studied in the wavelength region 500‐1400 nm and in the temperature range 15‐115 K. We observed three broad bands centered at 568 nm (A‐band), 718 nm (B‐band) and 1102 nm (C‐band) in the PL spectrum. The observed bands have half‐widths of 0.221, 0.258 and 0.067 eV for A‐, B‐, and C‐bands, respectively. The increase of the emission band half‐width, the blue shift of the emission band peak energy and the quenching of the PL with increasing temperature are explained using the configuration coordinate model. We have also studied the variations of emission band intensity versus excitation laser intensity in the range from 0.4 to 19.5 W cm‐2. The proposed energy‐level diagram allows us to interpret the recombination processes in TlGaS2 crystals. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The phase diagrams of the CuInS2‐Sb2S3 and CuInS2‐Bi2S3 systems were investigated using X‐ray powder diffraction and differential thermal analysis. Based on these results, the compositions for the growth of the CuInS2 single crystals from CuInS2‐Sb2S3 and CuInS2‐Bi2S3 melts were selected and Bridgman crystal growth process was performed. The investigation of the obtained single crystals using X‐ray powder diffraction and optical absorption spectra indicates that the incorporation of the solvent atoms into the crystal lattice is absent. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The luminescence of GeO2 rutile-like crystals was studied. Crystals were grown from a melt of germanium dioxide and sodium bicarbonate mixture. Luminescence of the crystal was compared with that of sodium germanate glasses produced in reduced and oxidized conditions. A luminescence band at 2.3 eV was observed under N2 laser (337 nm). At higher excitation photon energies and X-ray excitation an additional band at 3 eV appears in luminescence. The band at 2.3 eV possesses intra-center decay time constant about 100 μs at 290 K and about 200 μs at low temperature. Analogous luminescence was obtained in reduced sodium germanate glasses. No luminescence was observed in oxidized glasses under nitrogen laser, therefore the luminescence of rutile-like crystal and reduced sodium germanate glass was ascribed to oxygen-deficient luminescence center modified by sodium. The band at 2.3 eV could be ascribed to triplet-singlet transition of this center, whereas the band at 3 eV, possessing decay about 0.2 μs, could be ascribed to singlet-singlet transitions. Both bands could be excited in recombination process with decay kinetics determined by traps, when excitation realized by ArF laser or ionizing irradiation with X-ray or electron beam. Another luminescence band at 3.9 eV in GeO2 rutile-like crystal was obtained under ArF laser in the range 100-15 K. Damaging e-beam irradiation of GeO2 crystal with α-quartz structure induces similar luminescence band.  相似文献   

7.
Results of SEM, EDX and XRD studies, Optical Absorption spectra, Photoconductivity (PC) rise and decay, PC excitation spectra and Photoluminescence (PL) emission spectra are presented for (Cd‐Zn)S:CdCl2, Tb films prepared by chemical deposition method on glass substrates either at room temperature (RT) or at 60 °C in a water bath (WB). SEM studies show ball type structure which is related to layered growth. EDX measurements show excess of Cd in such preparations along with the presence of Tb. XRD studies show prominent diffraction lines of CdS and ZnS along with lines of CdCl2 and impurity. The values of strain (ε), grain size (D), and dislocation density (δ) are evaluated from XRD studies and the nature of crystallinity of the films are discussed. Optical Absorption spectra also show the presence of Tb in the lattice corresponding to the transition 7F6(4f8) → 5D0(5d14f7) of Tb3+ ions. From results of optical absorption spectra, the band gaps are determined, whose values are quite similar to those obtained from PC excitation spectra. Sufficiently high photo current (Ipc) to dark current (Idc) ratios with a maximum value of the order of 106 are observed. This high photosensitisation is related to increase in mobility and lifetime of carriers due to photo excitation. PL emission spectra consist of peaks due to transitions in Tb levels. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Photoluminescence spectra of Tl4GaIn3S8 layered crystals grown by Bridgman method have been studied in the wavelength region of 500–780 nm and in the temperature range of 26–130 K with extrinsic excitation source (λexc = 532 nm), and at T = 26 K with intrinsic excitation source (λexc = 406 nm). Three emission bands A, B and C centered at 514 nm (2.41 eV), 588 nm (2.11 eV) and 686 nm (1.81 eV), respectively, were observed for extrinsic excitation process. Variations in emission spectra have been studied as a function of excitation laser intensity in the 0.9‐183.0 mW cm–2 range for extrinsic excitation at T = 26 and 50 K. Radiative transitions from the donor levels located at 0.03 and 0.01 eV below the bottom of the conduction band to the acceptor levels located at 0.81 and 0.19 eV above the top of the valence band were proposed to be responsible for the observed A‐ and C‐bands. The anomalous temperature dependence of the B‐band peak energy was explained by configurational coordinate model. From X‐ray powder diffraction and energy dispersive spectroscopic analysis, the monoclinic unit cell parameters and compositional parameters of Tl4GaIn3S8 crystals were determined, respectively. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Raman and infrared spectra of disilver sulfamide, Ag2(HNSO2NH), and tetrasilver sulfamide, Ag4(NSO2N), together with their15N and2H derivatives (at 300 and 80 K), are reported and interpreted. Resonance conditions for the Raman spectrum of the deep red tetrasilver sulfamide is assumed, but no overtone progression of any band is observed. Silver-nitrogen stretching bands appear in the frequency region 300–200 cm–1. Although the X-ray crystal structures of the compounds reveal short AgAg distances, no frequency assignable to metalmetal stretching vibrations could be clearly located except for Ag4(NSO2N) in the case of the strong band at 288 cm–1 appearing in the infrared only. This band is assigned to a lattice vibration having high frequency due to strong metalmetal interaction. Optical diffuse reflectance and fluorescence emission/excitation spectra are included and compared to the literature data for silver-exchanged zerolites.  相似文献   

10.
In this work the reflectivity spectra and wave-length derivative reflectivity (WDR) spectra of CuInS2 crystals have been investigated in the region EEg. The n = 1, n = 2 and n = 3 excitonic states are determined and contours of exciton lines n = 1 are calculated. The parameters of excitons and bands have been determined for the region of band gap minimum. The main band gaps are determined for Γ-, N- and T-points of the Brillouin zone.  相似文献   

11.
《Journal of Non》2007,353(13-15):1330-1332
We have studied the absorption and photoluminescence (PL) of (GeS2)80(Ga2S3)20 glasses doped with 0.17, 0.35 and 1.05 at.% Er. The sharp bands centered at around 660, 810, 980 and 1540 nm in the absorption spectra can be associated with intra 4f-shell transitions in Er3+ ions from 4I15/2 level to 4F9/2, 4I9/2, 4I11/2 and 4I13/2 levels, respectively. It has been observed that the absorption edge shifts towards lower energies with increasing Er concentration. A decrease in the absorption coefficient in the range of weak absorption, as well as the host luminescence in more heavily doped samples has been established, which may be associated with less native defects in the glassy structure. The role of excitation wavelength (λex) on the PL emission band at 1540 nm using different Er3+-doping level has been evaluated. It has been found that the total PL band remains almost the same under direct excitation of Er3+ ions (at λex = 644, 770 and 982 nm), while it becomes narrower under the host excitation (at λex = 532 nm).  相似文献   

12.
Photoluminescence (PL) spectra of GaS0.75Se0.25 layered single crystals have been studied in the wavelength region of 500‐850 nm and in the temperature range of 10‐200 K. Two PL bands centered at 527 ( 2.353 eV, A‐band) and 658 nm (1.884 eV, B‐band) were observed at T = 10 K. Variations of both bands have been studied as a function of excitation laser intensity in the range from 8 × 10‐3 to 10.7 W cm‐2. These bands are attributed to recombination of charge carriers through donor‐acceptor pairs located in the band gap. Radiative transitions from shallow donor levels located 0.043 and 0.064 eV below the bottom of conduction band to acceptor levels located 0.088 and 0.536 eV above the top of the valence band are suggested to be responsible for the observed A‐ and B‐bands in the PL spectra, respectively.  相似文献   

13.
Short-range and intermediate range structures of the sodium borate glass system were investigated using Raman spectroscopy to quantify their dependence on Na2O concentration. High-resolution spectra were collected by Raman spectroscopy using the Q-switched, second-harmonic pulse of a Nd:YAG laser as an excitation source. The system was designed for measurement of the spectra of glasses and melts up to temperatures over 1000 °C with high signal to noise ratio. Use of polarized light and the simultaneous analysis of HH and VH spectra allowed deconvolution of Raman spectra into appropriate bands with high reproducibility. The deconvoluted bands in the high-frequency region of 1100-1600 cm−1 could be assigned to the vibration modes due to the short-range structures of BO3 and BO2O units in the glasses. The band intensity ratios showed a simple linear relationship with the molar ratio, symmetric BO3 triangle unit, N3s, to asymmetric BO2O triangle unit, N3a, obtained from 11B-NMR results. These results allowed a quantitative measure for normalizing the spectra leading to a direct comparison of the band intensities. The ring-structures of intermediate range order, boroxol, pentaborate, tetraborate and diborate groups, could be quantified from the spectra in the middle-frequency region. Their trends with Na2O concentration showed a good consistency with 10B-NMR results and also Krogh-Moe’s model.  相似文献   

14.
《Journal of Non》2007,353(52-54):4697-4701
The luminescent material europium-activated La2O3 have been prepared by the citric acid and poly (ethylene glycol) (PEG) precursor route. Their structures and optical properties were characterized by FT-IR spectrum, X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), UV–vis spectroscopy, and photoluminescence (PL) spectra, respectively. The results show considerable enhancement of the photoluminescence, especially the Eu3+ f–f transition excitation lines and the charge transfer band (CT). The samples can exhibit strong red emission centered at 626 nm excited at either the CT band (300 nm) or the Eu3+ f–f transition (396 nm), suggesting the potential application as the red phosphors for ultraviolet light-emitting diodes (LEDs), which can be attributed to the 5D07F2 transition of Eu3+. The remarkable enhancement of color purity of red emission and the concentration quenching of Eu3+ in La2O3 were also observed with increasing Eu3+ doped concentration.  相似文献   

15.
Strong blue-green light emitting Eu doped SrAl2O4 phosphor was synthesized by a low-temperature initiated, self-propagating and gas producing combustion process in a very short time (<5 min). The prepared powder was characterized by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy. The excitation spectrum shows a peak at 397 nm. Upon excitation at 397 nm, the emission spectrum exhibits a well defined broad band with maximum at 493 nm corresponding to 4f65d  4f7 transition. Electron paramagnetic resonance (EPR) measurements at X-band showed low field signals due to Eu2+ ions in SrAl2O4:Eu.  相似文献   

16.
M. León  P. Martín  R. Vila  J. Molla  A. Ibarra 《Journal of Non》2009,355(18-21):1034-1037
The temperature dependence of the photoluminescence induced at 2.7 eV by ultraviolet (UV) and vacuum ultraviolet (VUV) excitation of neutron irradiated (1021 n/m2 and 1022 n/m2) KU1 and KS-4V high purity silica, with different OH content, have been studied. Commercial silica Infrasil 301 has also been studied for comparison. At the highest neutron fluence and at the same temperature, the three irradiated silica grades show similar excitation spectra. Two close UV excitation bands, which show opposite temperature dependence, are observed at 4.8 and 5.1 eV. The 4.8 eV band, related to the triplet–singlet transition in SiODCs(II), decreases on decreasing temperature from 300 to 10 K and the band at 5.1 eV, probably related to SiODCs(I), is observed only at very low temperatures (~10 K). An important VUV excitation structure, observed at low temperature, could also be related to SiODCs(I). A shift of the irradiated bands is detected at low temperature.  相似文献   

17.
A novel Eu2+ activated 60SiO2–40BaO (mol%) glass ceramics phosphor was prepared and the optical properties were investigated. X-ray diffraction (XRD) and Raman spectra confirmed the formation of Ba2Si3O8 nano-crystals in the glass matrix. The Eu2+ activated glass ceramics exhibited broad emission band centered at 518 nm due to the 4f65d1→4f7 transition of Eu2+. Compared with the glass, the emission intensity of Eu2+ activated glass ceramics was much stronger, and the peak wavelength shifted toward shorter wavelength. The photoluminescence excitation (PLE) spectra of the glass ceramics showed an overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). According to the photoluminescence (PL) spectra, the CIE chromaticity coordinates of the Eu2+ activated glass and glass ceramics were calculated. The results indicated that the Eu2+ activated glass ceramics containing Ba2Si3O8 nano-crystals can be used as a potential green emitting phosphor under UV-LED excitation.  相似文献   

18.
The minority carrier lifetime at low and high excitation densities was determined in VPE layers of GaP and GaAs?0.2 P?0.8. The lifetime at high excitation densities, having a value up to ∽350 ns, is one to two orders of magnitude larger than the lifetime at low excitation densities. It is shown that impurities are involved in some saturable killer centres dominating at low excitation densities. In the case of the largest values of the minority carrier lifetime and at a dislocation density of > 105 cm?2, the non-radiative recombination at high excitation densities is shown to occur at dislocations; at lower values of the minority carrier lifetime the killer action may be due to microprecipitates. These findings also hold for LPE layers of GaP. It is shown that by measuring the minority carrier lifetime as a function of temperature a discrimination is possible between killer action due to diffusion of minorities towards sinks like dislocations or microprecipitates and due to capture by a normal point-defect type recombination centre.  相似文献   

19.
Photoluminescence (PL) spectra of Tl4Ga3InSe8 layered crystals grown by Bridgman method have been studied in the wavelength region of 600‐750 nm and in the temperature range of 17‐68 K. A broad PL band centered at 652 nm (1.90 eV) was observed at T = 17 K. Variations of emission band has been studied as a function of excitation laser intensity in the 0.13 to 55.73 mW cm‐2 range. Radiative transitions from donor level located at 0.19 eV below the bottom of conduction band to shallow acceptor level located at 0.03 eV above the top of the valence band were suggested to be responsible for the observed PL band. From X‐ray powder diffraction and optical absorption study, the parameters of monoclinic unit cell and the energy of indirect band gap were determined, respectively. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
《Journal of Non》2006,352(38-39):3995-4002
Optical properties and the coloration–decoloration kinetics of electrochromic films of amorphous tungsten oxide (a-WO3), produced by cathodic deposition from a sodium tungstate based aqueous peroxide electrolyte, have been investigated. As films color in 1 N H2SO4, sequential appearance of bands with maxima at ∼1 eV, 1.6 eV, 2 eV, and 2.4 eV is observed in their optical absorption and electrosorption spectra, is the same as in the case of reduction of nanosized hydrated-WO3 colloids with a gradual decrease in their size to that of 12-tungsten polyanions with Keggin structure, indicating the presence of such polytungstates in cathodically deposited a-WO3, too. When polytungstate is reduced by one electron, an absorption band with a maximum at ∼1.6 eV appears in the optical spectrum of the film. This band corresponds to the optical excitation of charge transfer of the W5+  W6+ type between two adjacent tungsten atoms. The reduction of polytungstate by a second electron with potential shift towards more negative values is accompanied by the appearance of an analogous band with a maximum at ∼2 eV. The reduction of such polytungstates involves participation of the bulk of injected electrons, indicating their dominate role in the nanostructure of the films investigated. The effective co-diffusion coefficient of electrons and protons in cathodically deposited a-WO3 exhibits a potential dependence with a maximum at 0.1 V against a silver-chloride electrode, where its value is ∼10−8 cm2/s. It has been shown that the decrease in this coefficient at potential values of over 0.1 V is caused by a decrease in electron mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号