首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alongside the numerous applications of NMR spectroscopy to structural elucidation in analytical chemistry, and to biochemical and morphological studies by NMR tomography, NMR microscopy makes possible a whole new range of applications. These include imaging, the investigation of biological objects such as plants and small animals, and also the observation of microscopic structures and structural changes in polymers and ceramics. NMR spectroscopy can also be conducted combinationally as volume-selective spectroscopy, whereby it is possible to spatially resolve the NMR-specific parameters: spin density ?, chemical shifts δ, and the relaxation times T1 and T2. The numerous well developed methods available make it possible to study dynamic processes by fast imaging with a temporal resolution in milliseconds. This not only allows the imaging of moving objects without incurring movement artefacts but also the measurement of diffusion constants in isotropic and anisotropic diffusion—in the latter case allowing, in principle, the determination of the complete diffusion tensor. The spatially resolved measurement of the relaxation times yields information on molecular mobility and bonding, e. g. the bonding of water, or other solvents, to polymers, the mobility of fluids in polymers or ceramics, or the three-dimensional evaluation of pore size in porous materials. In biomedicine, NMR microscopy allows the observation of growth on the cellular level, the study of embryos, and the development of therapeutic methods in animal experiments. It can lead to a drastic reduction in the number of animal experiments, and in combination with volume-selective spectroscopy gives valuable information on in-vivo metabolism.  相似文献   

2.
We outline the details of acquiring quantitative 13C cross‐polarization magic angle spinning (CPMAS) nuclear magnetic resonance on the most ubiquitous polymer for organic electronic applications, poly(3‐hexylthiophene) (P3HT), despite other groups' claims that CPMAS of P3HT is strictly nonquantitative. We lay out the optimal experimental conditions for measuring crystallinity in P3HT, which is a parameter that has proven to be critical in the electrical performance of P3HT‐containing organic photovoltaics but remains difficult to measure by scattering/diffraction and optical methods despite considerable efforts. Herein, we overview the spectral acquisition conditions of the two P3HT films with different crystallinities (0.47 and 0.55) and point out that because of the chemical similarity of P3HT to other alkyl side chain, highly conjugated main chain polymers, our protocol could straightforwardly be extended to other organic electronic materials. Variable temperature 1H NMR results are shown as well, which (i) yield insight into the molecular dynamics of P3HT, (ii) add context for spectral editing techniques as applied to quantifying crystallinity, and (iii) show why TH, the 1H spin–lattice relaxation time in the rotating frame, is a more optimal relaxation filter for distinguishing between crystalline and noncrystalline phases of highly conjugated alkyl side‐chain polymers than other relaxation times such as the 1H spin–spin relaxation time, T2H, and the spin–lattice relaxation time in the toggling frame, T1xzH. A 7 ms TH spin lock filter, prior to CPMAS, allows for spectroscopic separation of crystalline and noncrystalline 13C nuclear magnetic resonance signals. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

3.
We propose the small-angle flip-flop (SAFF) pulse sequence as an alternative procedure for the rapid measurement of the 1H spin–lattice relaxation time in the laboratory frame (T1) of solid and liquid substances, in a time-domain NMR experiment. Based on the original flip-flop pulse sequence, this technique allows the fast estimation of T1 values of samples that require minutes to hours of acquisition time if traditional pulse sequences are employed. We have applied SAFF to different substances, with T1 ranging from microseconds up to seconds, including natural clays, polymers, and organic and inorganic solvents. We also demonstrate the potential of the pulse sequence in the real-time monitoring of dynamic processes, such as the conformational changes of polymeric materials during heating. The results we obtained with SAFF are comparable with those acquired with the inversion-recovery pulse sequence, with the addition of several benefits. This pulse sequence obeys steady-state and magnetization-conserving principles, making it possible to dismiss the need for relaxation delay times of the order of 5T1. SAFF has shown high sensitivity in the resolution of individual components of T1 in multiexponential systems and can be easily integrated to well-established pulse sequences, such as Magic Sandwich Echo and Carr–Purcell–Meiboom–Gill, for the single-shot determination of T1 and T2 or T2*.  相似文献   

4.
Nuclear spin–lattice (T1) and spin–spin (T2) relaxation times provide versatile information about the dynamics and structure of substances, such as proteins, polymers, porous media, and so forth. Multidimensional experiments increase the information content and resolution of NMR relaxometry, but they also multiply the measurement time. To overcome this issue, we present an efficient strategy for a single‐scan measurement of a 2D T1T2 correlation map. The method shortens the experimental time by one to three orders of magnitude as compared to the conventional method, offering an unprecedented opportunity to study molecular processes in real‐time. We demonstrate that, despite the tremendous speed‐up, the T1T2 correlation maps determined by the single‐scan method are in good agreement with the maps measured by the conventional method. The concept of the single‐scan T1T2 correlation experiment is applicable to a broad range of other multidimensional relaxation and diffusion experiments.  相似文献   

5.
Dynamic nuclear polarization (DNP) is a technique to polarize the nuclear spin population. As a result of the hyperpolarization, the NMR sensitivity of the nuclei in molecules can be dramatically enhanced. Recent application of the hyperpolarization technique has led to advances in biochemical and molecular studies. A major problem is the short lifetime of the polarized nuclear spin state. Generally, in solution, the polarized nuclear spin state decays to a thermal spin equilibrium, resulting in loss of the enhanced NMR signal. This decay is correlated directly with the spin‐lattice relaxation time T1. Here we report [13C,D14]tert‐butylbenzene as a new scaffold structure for designing hyperpolarized 13C probes. Thanks to the minimized spin‐lattice relaxation (T1) pathways, its water‐soluble derivative showed a remarkably long 13C T1 value and long retention of the hyperpolarized spin state.  相似文献   

6.
The phase structure of a series of ethylene‐vinyl acetate copolymers has been investigated by solid‐state wide‐line 1H NMR and solid‐state high‐resolution 13C NMR spectroscopy. Not only the degree of crystallinity but the relative contents of the monoclinic and orthorhombic crystals within the crystalline region varied with the vinyl acetate (VA) content. Biexponential 13C NMR spin–lattice relaxation behavior was observed for the crystalline region of all samples. The component with longer 13C NMR spin–lattice relaxation time (T1) was attributed to the internal part of the crystalline region, whereas the component with shorter 13C NMR T1 to the mobile crystalline component was located between the noncrystalline region and the internal part of the crystalline region. The content of the mobile crystalline component relative to the internal part of the crystalline region increased with the VA content, showing that the 13C NMR spin–lattice relaxation behavior is closely related to the crystalline structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2199–2207, 2002  相似文献   

7.
Nanostructures consisting of the biomass constituents of the denatured Japanese cypress (Chamaecyparis obtusa) were examined by instrumental analyses at multiple hierarchical levels. Delignification with NaClO2 solution smoothly proceeded to reveal a distorted cell by scanning electron microscopy; however, a trace amount of lignin still remained in the delignified sample according to attenuated total reflection infrared spectra (ATR-IR). Although hemicellulose could be removed by a treatment with NaOH solution, thermogravimetric analysis and 13C cross-polarization/magic angle spinning (CP-MAS) NMR showed a certain amount of hemicellulose remaining. Reaction of the delignified sample with NaOH solution produced a shrunken cell wall that consisted of cellulose with small amounts of lignin and hemicellulose, which were detected by ATR-IR and 13C CP-MAS NMR, respectively. These samples from which lignin and/or hemicellulose had been removed easily released water molecules, producing a decrease in the 1H signal intensity and longer 1H spin–lattice relaxation time (T1H) values in variable temperature 1H MAS NMR. The T1H values provided information about nano-scale molecular interaction difficult to obtain by other instrumental analyses and they greatly changed depending on the water content and ratio of the biomass constituents. The spin–lattice relaxation of all samples occurred via water molecules under humid conditions that provided sufficient water. Under heat-dried conditions, the spin–lattice relaxation mainly occurred via lignin for the samples with lignin remaining while it occurred via cellulose/hemicellulose for the samples without lignin. The variable temperature T1H analysis indicated that predominant spin–lattice relaxation route via lignin was caused by higher molecular mobility of lignin-containing samples compared with lignin-free samples.  相似文献   

8.
Poly(dicyanoacetylene) (PDCA) has been synthesized and characterized. The pristine polymer has EPR g-value, linewidth, unpaired spin concentration, spin—spin relaxation time (T2), and room temperature dc conductivity (σRT) very similar to those of pristine cis-polyacetylene (PA), but shorter spin—lattice relaxation time (T1). Saturation doping with iodine has little effect on most EPR characteristics of the polymer except for a slight increase in T1. The doped PDCA has σRT value of only 5 X 10-9 (Ω cm)-1, indicating either low carrier concentration and/or carrier mobility. Partial cyclization of the nitrile groups by heating at 400°C of PDCA produces l-PDCA with significant increases in unpaired spin concentration and σRT but marginal effects on other properties. Saturation doping of l-PDCA with iodine increases σRT to 7 × 10-3 (Ω cm)-1 without appreciable changes in EPR characteristics. The dopants in both polymers can be removed by evacuation indicating only weak charge transfer interactions. The possible stereoelectronic contribution toward the property differences between the PDCA polymers and PA are discussed.  相似文献   

9.
Fluorescence probe and nuclear magnetic resonance (NMR) methods were employed to investigate the micellation of prepared crown ether surfactants, e.g. decyl 15‐crown‐5 and decyl 18‐crown‐6. Pyrene was employed as the fluorescence probe to evaluate the critical micellar concentration (CMC) of these surfactants in aqueous solutions while spin lattice relaxation times (T1) and chemical shifts of H‐1 NMR were applied in non‐aqueous solutions. Decyl 15‐crown‐5 with lower CMC forms micelles much easier than decyl 18‐crown‐6 with higher CMC in aqueous solutions, whereas decyl 18‐crown‐6 forms micelles easier than decyl 15‐crown‐5 in nonaqueous solutions. Comparison of the CMC of crown ether surfactants and other polyoxyethylene surfactants such as decylhexaethylene glycol was made. Effects of salts and solvents on the micellar formation were also investigated. In general, additions of both alkali metal salts and polar organic solvents into the aqueous surfactant solutions increased in the CMC of these surfactants. The formation of micelles in organic solvents such as methanol and acetonitrile was successfully observed by the NMR method while it was difficult to study these surfactants in organic solutions by the pyrene fluorescence probe method. The NMR study revealed that the formation of micelles resulted in the decrease in all H‐1 spin lattice relaxation times (T1) of hydrophobic groups, e.g. CH3 and CH2, and hydrophilic group OCH2 of these surfactants. However, upon the micellar formation, the H‐1 chemical shifts (δ) of these surfactant hydrophobic groups were found to shift to downfield (increased δ) while the chemical shift of the hydrophilic group OCH2 moved to up‐field. Comparison of the spin lattice relaxation time and H‐1 chemical shift methods was also made and discussed.  相似文献   

10.
The interior of intact, extinguished cigarettes following smoldering and puffing combustion was examined by proton magnetic resonance imaging (MRI). Spin-echo imaging sequences were employed to image substances with high molecular mobility such as water, smoke condensate, and waxy materials native to unburned tobacco. Single-point imaging (SPI) methods were employed to image the more rigid components, such as tobacco cell wall polysaccharides and cellulose acetate fibers inside the filter. The distribution of spin–spin relaxation times (T2) of the tobacco and filters was measured using a low-field 1H NMR bench-top spectrometer. One-dimensional profiles and two-dimensional images revealed the distribution of combustion and pyrolysis products deposited on the unburned portion of tobacco and in the filter of the cigarette. Image features as small as 25 μm were resolved. The current results demonstrate the feasibility of employing MRI to study combustion in burning cigarettes and other materials in real time.  相似文献   

11.
In the current work a racemate of (R)‐ and (S)‐benzylmandelate was separated with a stereoselective polysaccharide‐based chiral stationary phase by HPLC. To elucidate the occurring chiral molecular recognition processes in the heterogeneous system used, NMR spectroscopy was chosen under high resolution/magic angle spinning (HR/MAS) NMR conditions in the suspended state. Therefore, and as a proof of concept, a combination of several NMR methods such as spin–lattice relaxation time (T1) measurements (T1), the saturation transfer difference, and the 2D experiment of the transferred nuclear overhauser enhancement spectroscopy technique were applied. With HR/MAS NMR it is feasible to combine NMR and chromatography to achieve further insights into the separation process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
NMR spectroscopy is an indispensable technique for the determination of the chemical identity and structure of small molecules. The method is especially recognized for its robustness and intrinsically quantitative nature, and has manifested itself as a key analytical platform for diverse fields of application, ranging from chemical synthesis to metabolomics. Unfortunately, the slow recovery of nuclear spin polarization by spin‐lattice (T1) relaxation causes most experimental time to be lost on idle waiting. Furthermore, truly quantitative NMR (qNMR) spectroscopy requires waiting times of 5‐times the longest T1 in the sample, making qNMR spectroscopy slow and inefficient. We demonstrate here that co‐solute paramagnetic relaxation can mitigate these two problems simultaneously. The addition of a small amount of paramagnetic gadolinium chelate, available in the form of commercial contrast‐agent solutions, enables cheap, quantitative, and efficient high‐throughput mixture analysis.  相似文献   

13.
This low field NMR study established the correlation between the degree of crosslinking in rigid model systems to the proton spin lattice relaxation time (T1) measured. For three model epoxy samples, our data have shown that as the number of crosslinks increases the T1 minima shift toward higher temperatures. In addition, the magnitude of the T1 minimum is also observed to shift to higher values as a function of crosslinks formed. These trends are consistent with the predictions of the Bloembergen, Purcell, and Pound analysis. For these highly crosslinked systems, it was necessary to incorporate the Fuoss Kirkwood distribution function for describing the coupled dynamics of the connected individual monomer units of each crosslink. By fitting the spin lattice relaxation data at different temperatures to the Fuoss Kirkwood modified BPP theory, the average activation energy for the molecular motion and the breadth of the relaxation spectrum were obtained. For these model systems, the increase in the activation energy to achieve mobility and the broadening of relaxation distribution have also been determined quantitatively. The results of this study provide the foundation for using T1 to analyze the crosslinking process of polymeric systems. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 639–642  相似文献   

14.
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are supremely important techniques with numerous applications in almost all branches of science. However, until recently, NMR methodology was limited by the time constant T1 for the decay of nuclear spin magnetization through contact with the thermal molecular environment. Long‐lived states, which are correlated quantum states of multiple nuclei, have decay time constants that may exceed T1 by large factors. Here we demonstrate a nuclear long‐lived state comprising two 13C nuclei with a lifetime exceeding one hour in room‐temperature solution, which is around 50 times longer than T1. This behavior is well‐predicted by a combination of quantum theory, molecular dynamics, and quantum chemistry. Such ultra‐long‐lived states are expected to be useful for the transport and application of nuclear hyperpolarization, which leads to NMR and MRI signals enhanced by up to five orders of magnitude.  相似文献   

15.
Nuclear magnetic resonance (NMR) spin–lattice relaxation times (T1) in various polyethylene and polypropylene resins were measured at 20 MHz and at temperatures of 130–490 K. At each temperature and for all resins, only a single value of T1 was found, which was consistent with the occurrence of rapid spin diffusion throughout the protons attached to the polymer chains. The data were analyzed for the estimation of activation energies corresponding to molecular motion causing spin–lattice relaxation. Two well‐defined minima were found for loge(T1) plotted as a function of temperature for all of the polypropylene resins. Single very broad minima were found for all of the polyethylene samples. In contrast, the free induction decay signals from all of the resins following single radio‐frequency pulses were observed to contain a rapidly decaying component followed by a much more slowly decaying signal. These components were used to estimate the amount of rigid component present in the solid resins at room temperature. Samples of one high‐density polyethylene and one low‐density polyethylene were irradiated with γ radiation up to a 500‐kGy dose to examine the effects of crosslinking on the NMR relaxation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 572–584, 2002; DOI 10.1002/polb.10116  相似文献   

16.
Two inequivalent protons from 1H NMR spectra of RbH2AsO4 in the paraelectric phase were distinguished using static NMR and MAS NMR. From the 1H spin–lattice relaxation times in the laboratory frame, T1, and rotating frame, T, of the two crystallographically inequivalent hydrogen sites, i.e., H(1) and H(2), the temperature dependences of T1 and T for H(1) were related to the reorientational motion. The shorter H(1) bonds give rise to stronger H-bonds, and protons involved in stronger H-bonds have long relaxation times. Consequently, the RbH2AsO4 structure has two crystallographically inequivalent sites with two different hydrogen-bond lengths.  相似文献   

17.
Paramagnetic relaxation enhancement (PRE) is commonly used to speed up spin lattice relaxation time (T1) for rapid data acquisition in NMR structural studies. Consequently, there is significant interest in novel paramagnetic labels for enhanced NMR studies on biomolecules. Herein, we report the synthesis and characterization of a modified poly(styrene‐co‐maleic acid) polymer which forms nanodiscs while showing the ability to chelate metal ions. Cu2+‐chelated nanodiscs are demonstrated to reduce the T1 of protons for both polymer and lipid‐nanodisc components. The chelated nanodiscs also decrease the proton T1 values for a water‐soluble DNA G‐quadruplex. These results suggest that polymer nanodiscs functionalized with paramagnetic tags can be used to speed‐up data acquisition from lipid bilayer samples and also to provide structural information from water‐soluble biomolecules.  相似文献   

18.
NMR relaxation measurement of perfluorocarbons (PFCs), such as perfluorotributylamine (FTBA), is a convenient method for the determination of oxygen concentrations in tissues and tumors. Previous relaxation studies of FTBA used different 19F NMR assignments causing some confusion. Fluorine‐detected 19F, 13C HMQC and HMBC and selectively 19F‐decoupled 13C NMR provided unequivocal 19F and 13C assignments for FTBA and perfluoropentanoic acid (FPA). Based on those assignments, 13C spin–lattice relaxation time constants (T1) and effective correlation times for FTBA and FPA are reported and discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Monodisperse porous particles of poly(divinylbenzene) prepared by the activated swelling method have been investigated by solid‐state 13C crosspolarization magic‐angle spinning (CPMAS) nuclear magnetic resonance (NMR) relaxation measurements. Homopolymeric combinations of two porogens (toluene and 2‐ethylhexanoic acid) and two monomers (meta‐ and para‐divinylbenzene) were studied. Residual vinyl groups were systematically reacted with increasing amounts of bromine, producing 20 different polymers samples for which we measured crosspolarization times, TCH, proton rotating frame spin‐lattice relaxation, T, 13C spin‐lattice relaxation, T, and proton spin‐lattice relaxation, T. These parameters were chosen to reflect expected changes in a wide range of frequencies of motion as a function of structure. Relative differences in the molecular mobility of the major functional groups (aromatic, vinyl and aliphatic) is related to initial reactants used, vinyl concentration, relative reactivity of vinyl groups, distribution of vinyl groups, pore structure, and degree of crosslinking. Variable temperature 1H combined rotation and multiple pulse NMR (CRAMPS) was used to derive activation energies for selected samples via measurement of the proton spin‐lattice relaxation time, T. Irreversible thermal effects were observed in ambient temperature relaxation after heating to temperatures in the range of 393–418 K. Simple univariate statistical analyses failed to reveal consistent correlations among the known variables. However, the application of more sophisticated multivariate and neural network analyses allowed excellent structure–property predictions to be made from the relaxation time data. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1307–1328, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号