首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu C  Djuth F  Li X  Chen R  Zhou Q  Shung KK 《Ultrasonics》2012,52(4):497-502
This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 × 9 μm. The width of the kerf among pillars was ∼5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and −6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about −35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers, e.g. 1D and 2D arrays.  相似文献   

2.
We study displacement and strain measurement error of dual transducers (two linear arrays, aligned orthogonally and coplanar). Displacements along the beam of each transducer are used to obtain measurements in two-dimensions. Simulations (5 MHz) and experiments (10 MHz) are compared to measurements with a single linear array, with and without angular compounding. Translation simulations demonstrate factors of 1.07 larger and 8.0 smaller biases in the axial and lateral directions respectively, for dual transducers compared to angular compounding. As the angle between dual transducers decreases from 90° to 40°, for 1% compression simulations, the lateral RMS error ranges from 2.1 to 3.9 μm compared to 9 μm with angular compounding. Simulation of dual transducer misalignment of 1 mm and 2° result in errors of less than 9 μm. Experiments demonstrate factors of 3.0 and 5.2 lower biases for dual transducers in the axial and lateral directions respectively compared to angular compounding.  相似文献   

3.
In order to have consistent and repeatable effects of sonodynamic therapy (SDT) on various cancer cells or tissue lesions we should be able to control a delivered ultrasound energy and thermal effects induced. The objective of this study was to investigate viability of rat C6 glioma cells in vitro depending on the intensity of ultrasound in the region of cells and to determine the exposure time inducing temperature rise above 43 °C, which is known to be toxic for cells. For measurements a planar piezoelectric transducer with a diameter of 20 mm and a resonance frequency of 1.06 MHz was used. The transducer generated tone bursts with 94 μs duration, 0.4 duty-cycle and initial intensity ISATA (spatial averaged, temporal averaged) varied from 0.33 W/cm2 to 8 W/cm2 (average acoustic power varied from 1 W to 24 W). The rat C6 glioma cells were cultured on a bottom of wells in 12-well plates, incubated for 24 h and then exposed to ultrasound with measured acoustic properties, inducing or causing no thermal effects leading to cell death. Cell viability rate was determined by MTT assay (a standard colorimetric assay for assessing cell viability) as the ratio of the optical densities of the group treated by ultrasound to the control group. Structural cellular changes and apoptosis estimation were observed under a microscope. Quantitative analysis of the obtained results allowed to determine the maximal exposure time that does not lead to the thermal effects above 43 °C in the region of cells for each initial intensity of the tone bursts used as well as the threshold intensity causing cell death after 3 min exposure to ultrasound due to thermal effects. The averaged threshold intensity was found to be about 5.7 W/cm2.  相似文献   

4.
Surface acoustic wave (SAW) waveguide resonator is formed by a ring-shaped strip of copper 10 μm wide and ∼130 μm in diameter embedded into a 0.8 μm thick layer of silica on a silicon wafer. SAWs are excited at one side of the copper ring by a short laser pulse focused into a spatially periodic pattern and detected via diffraction of the probe laser beam overlapped with the excitation spot. SAW wavepackets with central frequency 460 MHz travel around the ring and are detected each time they make a full circle and pass trough the probe spot. Potential applications of ring resonators for SAWs are discussed.  相似文献   

5.
The authors present an analysis of a plasmonic waveguide, simulated using a two-dimensional finite-difference time-domain technique. With the surface structures located on the surface of the metal, the device is able to confine and guide light waves in a sub-wavelength scale. And two waveguides can be placed within 150 nm (∼6% of the incident wavelength) that will helpful for the optoelectronic integration. Within the 20 μm simulation region, it is found that the intensity of the guided light at the interface is roughly two to four times the peak intensity of the incident light, and the propagation length can reach approximately 40 μm at the wavelength of 2.44 μm.  相似文献   

6.
Actively mode-locked electron-beam-sustained-discharge CO laser producing a train of ∼5-15 ns (FWHM) spikes following with repetition rate 10 MHz for both single-line and multiline mode of operation in the mid-IR range of ∼5 μm was experimentally studied. Total laser pulse duration was ∼0.5 ms for both mode-locked and free-running laser. Specific output energy in multiline CO laser mode of operation was up to 20 Jl−1 Amagat−1 and the laser efficiency up to 3.5%. The active mode-locking was achieved for single-line CO laser mode of operation in spectral range 5.2-5.3 μm. This sort of radiation can be used for pumping an optical parametric amplifier for optical stochastic cooling in relativistic heavy ion collider, for laser ablation, and for studying vibrational and rotational relaxation of CO and NO molecules.  相似文献   

7.
8.
Dental erosion and decay are increasingly prevalent but as yet there is no quantitative monitoring tool. Such a tool would allow earlier diagnosis and treatment and ultimately the prevention of more serious disease and pain. Despite ultrasound having been demonstrated as a method of probing the internal structures of teeth more than 40 years ago, development of a clinical tool has been slow. The aim of the study reported here was to investigate the use of a novel high frequency ultrasound transducer and validate it using a known dental technique.A tooth extracted for clinical reasons was sectioned to provide a sample that contained an enamel and dentine layer such that the enamel-dentine junction (EDJ) was of a varying depth. The sample was then submerged in water and a B-scan recorded using a custom-designed piezocomposite ultrasound transducer with a centre frequency of 35 MHz and a −6 dB bandwidth of 24 MHz.The transducer has an axial resolution of 180 μm and a spatial resolution of 110 μm, a significant advance on previous work using lower frequencies. The depth of the EDJ was measured from the resulting data set and compared to measurements from the sequential grinding and imaging (SGI) method.The B-scan showed that the EDJ was of varying depth. Subsequently, the EDJ measurements were found to have a correlation of 0.89 (p < 0.01) against the SGI measurements. The results indicate that high frequency ultrasound is capable of measuring enamel thickness to an accuracy of within 10% of the total enamel thickness, whereas currently there is no clinical tool available to measure enamel thickness.  相似文献   

9.
X-ray microtomography is used to visualize, in-situ, the three-dimensional nature of the magnetic field induced macro-structures (>1 μm) inside a bulk (∼1 mm diameter) magnetite-particle-mineral oil ferrofluid sample. Columnar structures of ∼10 μm diameter were seen under a 0.35 kG applied magnetic field, while labyrinth type structures ∼4 μm in width were seen at 0.55 kG. The structures have height/width aspect ratios >100. The results show that the magnetite volume fraction is not constant within the structures and on average is considerably less than a random sphere packing model.  相似文献   

10.
The morphology of WO3 aggregates formed by irregular nanoparticles (D∼40 nm) and nanowires of different aspect ratios (2, 4, 6, and 10 μm nominal lengths) dispersed in commonly used polar solvents without dispersant agents is investigated using a small-angle light scattering technique and by means of fractal theory. Nanoparticles form compact spherical aggregates (Df∼2.6), whereas 2 μm nanowires with low aspect ratio (L/D∼10) follow a slow cluster-cluster aggregation mechanism with no discernable change in fractal dimension (Df=2.1) monitored in an extended period of 6 months, despite a notable growth in size (Rg=2.3-3.1 μm). For higher aspect ratio nanowires, scattered intensity profiles, which migrate towards the Porod regime, qualitatively obey the Lorenz-Mie theory predictions. The 10 μm nanowires with very high aspect ratio (L/D∼250) are observed to form stable dispersions in a time span of 6 days. Analytical methods based on spherical primary particle formulations predict Df=1.9, 1.7, and 1.4 for 4, 6, and 10 μm nanowires, respectively.  相似文献   

11.
Low intensity pulsed ultrasound (LIPUS) was reported to accelerate the rate of fracture healing. When LIPUS is applied to fractures transcutaneously, bone tissues at different depths are exposed to different ultrasound fields. Measurement of LIPUS shows pressure variations in near field (nearby transducer); uniform profile was found beyond it (far field). Moreover, we have reported that the therapeutic effect of LIPUS is dependent on the axial distance of ultrasound beam in rat fracture model. However, the mechanisms of how different axial distances of LIPUS influence the mechanotransduction of bone cells are not understood. To understand the cellular mechanisms underlying far field LIPUS on enhanced fracture healing in rat model, the present study investigated the effect of ultrasound axial distances on (1) osteocyte, the mechanosensor, and (2) mechanotransduction between osteocyte and pre-osteoblast (bone-forming cell) through paracrine signaling. We hypothesized that far field LIPUS could enhance the osteogenic activities of osteoblasts via paracrine factors secreted from osteocytes. The objective of this study was to investigate the effect of axial distances of LIPUS on osteocytes and osteocyte–osteoblast mechanotransduction. In this study, LIPUS (plane; 2.2 cm in diameter, 1.5 MHz sine wave, ISATA = 30 mW/cm2) was applied to osteocytes (mechanosensor) at three axial distances: 0 mm (near field), 60 mm (mid-near field) and 130 mm (far field). The conditioned medium of osteocytes (OCM) collected from these three groups were used to culture pre-osteoblasts (effector cell). In this study, (1) the direct effect of ultrasound fields on the mechanosensitivity of osteocytes; and (2) the osteogenic effect of different OCM treatments on pre-osteoblasts were assessed. The immunostaining results indicated the ultrasound beam at far field resulted in more β-catenin nuclear translocation in osteocytes than all other groups. This indicated that osteocytes could detect the acoustic differences of LIPUS at various axial distances. Furthermore, we found that the soluble factors secreted by far field LIPUS exposed osteocytes could further promote pre-osteoblasts cell migration, maturation (transition of cell proliferation into osteogenic differentiation), and matrix calcification. In summary, our results of this present study indicated that axial distance beyond near field could transmit ultrasound energy to osteocyte more efficiently. The LIPUS exposed osteocytes conveyed mechanical signals to pre-osteoblasts and regulated their osteogenic cellular activities via paracrine factors secretion. The soluble factors secreted by far field exposed osteocytes led to promotion in migration and maturation in pre-osteoblasts. This finding demonstrated the positive effects of far field LIPUS on stimulating osteocytes and promoting mechanotransduction between osteocytes and osteoblasts.  相似文献   

12.
Thick crystalline zirconium oxide films were synthesized on Zircaloy-4 substrates by anodic oxidation at room temperature in NaOH solution with a stable applied voltage (300 V). The film is approximately 4.7 μm in thickness. The XPS and SEM analysis shows that the film is a three-layer structure in water, hydroxide and oxide parts. The thickness of that order is ∼0.01 μm, ∼1 μm, ∼3.7 μm, respectively. The oxide layer is composed of tetragonal and monoclinic phases with the volume ratio about 0.2. Furthermore, the thick anodic film acts as a barrier to oxygen and zirconium migrations. It effectively protects zirconium alloys against the worse corrosion. An extremely low passive current density of ∼0.018 μA/cm2 and a low oxidation weight gain of ∼0.411 mg/cm2 were also observed in the films.  相似文献   

13.
We investigate characteristics of gold metal strip waveguides based on long range surface plasmon polaritons (LRSPPs) along thin metal strips embedded in a polymer for practical applications at the telecommunication wavelengths of 1.31 and 1.55 μm. Guiding properties of the gold strip waveguides are theoretically and experimentally evaluated with the limited thickness and width up to ∼20 nm and ∼10 μm, respectively. The lowest propagation loss of ∼1.4 dB/cm is obtained with a 14.5-nm-thick and 2-μm-wide gold strip at 1.55 μm. With a single-mode fiber, the lowest coupling loss of ∼0.4 dB/facet is achieved with a 14.5-nm-thick and 5-μm-wide gold strip at 1.55 μm. The lowest insertion losses are obtained 8-9 dB with 1.5 cm-long gold strips of a limited thickness and width at both the wavelengths. We demonstrate a 10 Gbps optical signal transmission via the LRSPP waveguide with a 14 nm-thick, 2.5 μm-wide, and 4 cm-long gold strip. These LRSPP waveguides have potential applications for optical interconnects and communications.  相似文献   

14.
A simple electrochemical process has been implemented to fabricated fractal structured leaf-like metallic zinc. The fabricated material was structurally characterized using X-ray diffraction that reveals the hexagonal unit cell structure. Also the growth of the structure is anisotropic. Field emission scanning electron microscopic images revealed clearly the leaf-like morphology of the fabricated material is fern like and ∼500 μm in length, ∼50-60 μm wide and the platelets thickness is ∼5 μm. The growth of this structure is diffusion controlled and locally accomplished with the oriented attachment. Raman shift measurement revealed the existence of surface optical phonon modes which is very significant for surface defects.  相似文献   

15.
Lam KH  Chen Y  Cheung KF  Dai JY 《Ultrasonics》2012,52(1):20-24
A ∼5 MHz focusing PMN-PT single crystal ultrasound transducer has been fabricated utilizing a mechanical dimpling technique, where the dimpled crystal wafer was used as an active element of the focusing transducer. For the dimpled focusing transducer, the effective electromechanical coupling coefficient was enhanced significantly from 0.42 to 0.56. The dimpled transducer also yields a −6 dB bandwidth of 63.5% which is almost double the bandwidth of the plane transducer. An insertion loss of the dimpled transducer (−18.1 dB) is much lower than that of the plane transducer. Finite element simulation also reveals specific focused beam from concave crystal surface. These promising results show that the dimpling technique can be used to develop high-resolution focusing single crystal transducers.  相似文献   

16.
The energy relaxation kinetics and the structure of the J-aggregates of water-soluble porphyrin 5,10,15,20-tetrasulphonatophenyl porphine (TPPS4) were investigated in aqueous medium by means of time-resolved fluorescence spectroscopy and confocal laser-scanning fluorescence microscopy. The excitation of the J-aggregates, at excitation intensities higher than ∼1015 photons/cm2 per pulse, results in a remarkable decrease of the fluorescence quantum yield and in the appearance of an additional, non-exponential energy relaxation channel with a decay constant that depends on the excitation intensity. This relaxation mechanism was attributed to the exciton single-singlet annihilation. The exciton lifetime in the absence of the annihilation was calculated to be ∼150 ps. Using exciton annihilation theory, the exciton migration within the J-aggregates could be characterized by determining the exciton diffusion constant (1.8±0.9)  10−3 cm2/s and the hopping time (1.2±0.6) ps. Using the experimental data, the size of the J-aggregate could be evaluated and was seen to yield at least 20 TPPS4 molecules per aggregate. It was shown by means of confocal fluorescence laser scanning microscopy that TPPS4 does self-associate in polyvinyl alcohol (PVA) at acidic pH forming molecular macro-assemblies on a scale of ∼1 μm in PVA matrices.  相似文献   

17.
We demonstrate and optimize, for a mJ/ns release at the wavelength 1.064 μm, the operation of a compact laser system designed in the form of a hybrid, active-passive, Q-switched Nd3+:YAG/Cr4+:YAG microchip laser seeding an Yb-doped specialty multi-port fiber amplifier. As the result of the amplifier optimization, ∼1 mJ, ∼1 ns, almost single-mode pulses at a 1-10-kHz repetition rate are achieved, given by a gain factor of ∼19 dB for an 11-μJ input from the microchip laser. Meanwhile, a lower pulse energy, ∼120 μJ, but a much higher gain (∼25 dB) are eligible for the less powerful (0.35 μJ) input pulses.  相似文献   

18.
Using a plasma polymerisation process with optical lithography, wet and dry etching techniques we have fabricated an organic micro-fluidic device (OMDF) on silicon/glass substrate. An asymmetric electrode array used in micro-fluidic device (MFD) with small electrode (4 μm wide) separated from the large electrode (20 μm wide) by 20 μm and 6 μm gaps in both sides respectively. In this study we have found that plasma polymerisation process is not only important for changing the surface chemical and physical properties but also has advantage in bonding of these micro devices at low temperature (∼100 °C) due to low Tg of polymeric material. The fluidic velocity measurement shows a maximum of about 450 μm/s in a 150 μm channel width of organic micro-fluidic devices after plasma surface modification.  相似文献   

19.
In this paper, we present the transmission characteristics of a polyurea ultrasonic transducer operating in water. In this study, we used a polyurea transducer with fundamental resonance at approximately 30 MHz. Firstly, acoustic pressure radiated from the transducer was measured using a hydrophone, which has a diameter of 0.2 mm. The transmission characteristics such as relative bandwidth, pulse width, and acoustic sensitivity were calculated from the experimental results. The results of the experiment showed a relative bandwidth of 50% and a pulse width of 0.061 μs. The acoustic sensitivity was 0.60 kPa/V with good linearity, where the correlation coefficient R in the fitting calculation was 0.996. A maximum pressure of 13.1 kPa was observed when the transducer was excited at a zero-to-peak voltage of 21 V. Moreover, we experimentally verified the results. The results of the pulse/echo experiment showed that the estimated diameters of the copper wires were 458 and 726 μm, where the differences between the actual and measured values were 15% and 4%, respectively. Acoustic streaming was also observed so that a particle velocity map was estimated by particle image velocimetry (PIV). The sound pressure calculated from the particle velocity obtained by PIV showed good agreement with the acoustic pressure measured using the hydrophone, where the differences between the calculated and measured values were 12–19%.  相似文献   

20.
Multicrystalline silicon wafers are used for approximately half of all solar cells produced at present. These wafers typically have dislocation densities of up to ∼106 cm−2. Dislocations and associated impurities act as strong recombination centres for electron–hole pairs and are one of the major limiting factors in multicrystalline silicon substrate performance. In this work we have explored the possibility of using chemical methods to etch out the cores of dislocations from mc-Si wafers. We aim to maximise the aspect ratio of the depth of the etched structure to its diameter. We first investigate the Secco etch (1K2Cr2O7 (0.15 M): 2HF (49%)) as a function of time and temperature. This etch removes material from dislocation cores much faster than grain boundaries or the bulk, and produces tubular holes at dislocations. Aspect ratios of up to ∼7:1 are achieved for ∼15 μm deep tubes. The aspect ratio decreases with tube depth and for ∼40 μm deep tubes is just ∼2:1, which is not suitable for use in bulk multicrystalline silicon photovoltaics. We have also investigated a range of etches based on weaker oxidising agents. An etch comprising 1I2 (0.01 M): 2HF (49%) attacked dislocation cores, but its etching behaviour was extremely slow (<0.1 μm/h) and the pits produced had a low aspect ratio (<2:1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号