首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fourier transform infrared and Fourier transform Raman spectra of Cu(II) bis-acetylacetone have been obtained. The geometry, frequency and intensity of the vibrational bands of this compound and its 1,5-(13)C(2), 3-(13)C, 1,3,5-(13)C(3), 2,4-(13)C(2), (18)O(2) and 2,4-(13)C(2)-(18)O(2) derivatives were obtained by the density functional theory (DFT) with the B3LYP functional and using the 6-31G(*) and 3-21G(*) basis sets. The calculated frequencies are compared with the solid infrared and Raman spectra. All the measured infrared and Raman bands were interpreted in terms of the calculated vibrational modes. The percentage of deviation of the bond lengths and bond angles gives a good picture of the normal modes, and serves as a basis for the assignment of the wavenumbers. Most computed bands are predicted to be at higher wavenumbers than the experimental bands. The calculated geometrical parameters show slight differences compared with the experimental results. These differences can be explained by the different physical state of Cu(II) bis-acetylacetone. The DFT-B3LYP calculations assumed a free molecule in the gas phase. Analysis of the vibrational spectra indicates a strong coupling between the chelated ring modes.  相似文献   

2.
The Fourier transform infrared and Raman spectra of solid terephthalic acid, p-C6H4(COOH)2, have been recorded, and the Fourier transform Raman spectra for the terephthalate anion were measured. The wavenumbers for the band positions have been calculated in order to assign them. Moller-Plesset (MP2) and Density functional theory (DFT) calculations have been carried out with Huzinaga-Dunning basis sets (DZV). Also, a normal coordinate analysis through the Wilson-El'yashevich method was performed. The differences between the calculated ab initio spectra and the spectra of the solid phase have been interpreted with respect to the different C(2h) and C(i) local symmetry in the gas and in the solid phase, respectively, and considering also the formation of long-chains of terephthalic acid in the solid phase. In spite to the absence of experimental data for the cis conformation, calculations have been carried out and structural parameters and infrared intensities have been evaluated for the trans and cis conformations of terephthalic acid.  相似文献   

3.
Fourier transform infrared and Fourier transform Raman spectra of 3-amino-1-phenyl-2-buten-1-one and its deuterated analogue were recorded in the regions 400-4,000 and 150-4,000 cm(-1), respectively. Furthermore, the molecular structure and vibrational frequencies of title compound were investigated by a series of density functional theoretical, DFT, and ab initio calculations at the post-Hartree-Fock (MP2) level. Although, the calculated frequencies are generally in agreement with the observed spectra but the DFT results are in much better quantitative agreement with the observed spectra than the MP2 results. The observed wavenumbers were analyzed and assigned to different normal modes of vibration of the molecule. The calculated geometrical parameters show a strong intramolecular hydrogen bond with a N...O distance of 2.621-2.668 A. This bond length is shorter than that of its parent, 4-amino-3-penten-2-one (with two methyl groups in the beta-position), which is in agreement with spectroscopic results. The topological properties of the electron density contributions for intramolecular hydrogen bond in 3-amino-1-phenyl-2-buten-1-one and 4-amino-3-penten-2-one have been analyzed in term of the Bader theory of atoms in molecules (AIM). These results also support the stronger hydrogen bond in the title compound with respect to the parent molecule.  相似文献   

4.
The room temperature attenuated total reflection Fourier transform infrared spectrum of the 2-(4-methoxyphenyl)-1H-benzo[d]imidazole has been recorded with diamond/ZnSe prism. The conformational behaviour, structural stability of optimized geometry, frequency and intensity of the vibrational bands of the title compound were investigated by utilizing ab initio calculations with 6-311G** basis set at HF, B3LYP, BLYP, B3PW91 and mPW1PW91 levels. The harmonic vibrational frequencies were calculated and scaled values have been compared with experimental IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions using VEDA 4 program. Furthermore, the optimal uniform scaling factors calculated for the title compound are 0.9120, 0.9596, 0.9660, 0.9699, and 0.9993 for HF, mPW1PW91, B3PW91, B3LYP and BLYP methods, respectively.  相似文献   

5.
The geometry, frequency and intensity of the vibrational bands of 8-hydroxyquinoline (8-HOQ) were obtained by HF and density functional theory (DFT) with BLYP and B3LYP functionals and 6-31G(d) as the basis set. The optimized bond lengths and bond angles are in good agreement with the X-ray data. The vibrational spectra of 8-HOQ which is calculated by the HF and DFT methods, reproduces the vibrational wavenumbers and intensities with an accuracy, which allows reliable vibrational assignments. Complexes of the type Hg(8-HOQ)X(2) [where X = Cl , Br] have been studied in the 4000-200 cm(-1) region, and assignment of all the observed bands were made. The analysis of the infrared spectra indicates that there are some structure-spectra correlations.  相似文献   

6.
Molecular structure and vibrational frequencies of triformylmethane have been investigated by means of density functional theory (DFT) calculations. The geometrical parameters and vibrational frequencies obtained in the B3LYP, B3PW91, BLYP, BPW91, G96LYP and G96PW91 levels of DFT and compared with the corresponding parameters of malonaldehyde (MA). Fourier transform infrared spectra of triformylmethane and its deuterated analogue were clearly assigned. Theoretical calculations show that the hydrogen bond strength of triformylmethane is stronger than that of MA, which is in agreement with spectroscopic results.  相似文献   

7.
The Fourier transform Raman and Fourier transform infrared spectra of 5-amino-2-chlorobenzoic acid (5A2CBA) were recorded in the solid phase. Geometry opitimizations were done without any constraint and harmonic-vibrational wavenumber and several thermodynamic parameters were calculated for the minimum energy conformer at ab initio and DFT levels invoking 6-311G(d,p) basis set and the results are compared with the experimental values with the help of three specific scaling procedures, the observed vibrational wavenumbers in FTIR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range, the error obtained was in general very low. The appropriate theoretical spectrograms for the FTIR spectra of the title molecule were also constructed.  相似文献   

8.
Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of ferulic acid (FA) (4-hydroxy-3-methoxycinnamic acid) were carried out by using density functional (DFT/B3LYP/BLYP) method with 6-31G(d,p) as basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from solid phase FT-IR and FT-Raman spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with calculated values. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the FA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the infrared and Raman spectra of FA was also reported. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT-IR and FT-Raman spectra for the title molecule have been constructed.  相似文献   

9.
The geometry, frequency, and intensity of the vibrational bands of imidazo[1,2-a]pyridine (which is abbreviated as impy) were obtained by the density functional theory (DFT) calculations with BLYP, B3LYP, and B3PW91 functionals and 6-31G(d) basis set. The optimized geometric bond lengths and bond angles are in good agreement with the available X-ray data. The infrared spectrum of imidazo[1,2-a]pyridine was computed by the DFT method in order to reproduce the vibrational wavenumbers and intensities with an accuracy, which allows reliable vibrational assignments. Total energy distribution and isotopic shifts have been calculated in order to help for the perfect assignment of the vibrational modes. The zinc halide complexes Zn(impy)2X2 [X = Cl, Br, and I] have also been synthesized. The compounds were characterized using the elemental analysis, FT-IR spectra, and quantum chemical calculations. The geometry optimization of Zn(impy)2X2 yields distorted tetrahedral environment around Zn ion.  相似文献   

10.
The Fourier transform Raman and Fourier transform infrared spectra of 2-aminobenzyl alcohol (2ABA) were recorded in the solid phase. Geometry optimizations were done with out any constraint and harmonic vibrational wave numbers and several thermodynamic parameters were calculated for the minimum energy conformer at ab initio and DFT levels invoking 6-31g** and 6-311+g(2d, p) basis sets and the results were compared with the experimental values. With the help of three specific scaling procedures, the observed vibrational wavenumbers in FTIR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range and the error obtained was in general very low. The appropriate theoretical spectrograms for the Raman and IR spectra of 2ABA were also constructed.  相似文献   

11.
The Fourier transform Raman and Fourier transform infrared spectra of 5-bromo-2-nitropyridine were recorded in the solid phase. The equilibrium geometry, natural atomic charges, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-311++G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. A detailed interpretations of the infrared and Raman spectra of 5-bromo-2-nitropyridine is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrograms for the Raman and IR spectra of the title molecule have been constructed.  相似文献   

12.
The experimental and theoretical study on the structures and vibrations of 6-chloronicotinic acid (6-CNA, C(6)H(4)ClNO(2)) are presented. The Fourier transform infrared spectra (4,000-50 cm(-1)) and the Fourier transform Raman spectra (3,500-50 cm(-1)) of the title molecule in solid phase have been recorded, for the first time. The geometrical parameters and energies have been obtained for all four conformers from DFT (B3LYP) with different basis sets calculations. There are four conformers, C1, C2, C3, and C4 for this molecule. The computational results diagnose the most stable conformer of 6-CNA as the C1 form. The vibrations of the two stable and two unstable conformers of 6-CNA are researched with the aid of quantum chemical calculations. The molecular structure, vibrational frequencies, infrared intensities and Raman scattering activities and theoretical vibrational spectra were calculated a pair of molecules linked by the intermolecular OH...O hydrogen bond. The spectroscopic and theoretical results are compared to the corresponding properties for 6-CNA stable monomers and dimer of C1 conformer.  相似文献   

13.
The FT-Raman and UV-visible spectra of (12S)-1,4,7,10-tetraazadicyclo[10,3,0]-pentadecane-3,11-dione and its derivatives were obtained and discussed. The harmonic vibrational wavenumbers and the corresponding Raman scattering activities in their electronic ground-states were calculated at the DFT-B3LYP/6-31G(d) level of theory. The calculated wavenumbers were then scaled and compared with the experimental values. The 7-(2,4-dinitrophenyl)-(12S)-1,4,7,10-tetrazadicyclo[10,3,0]-pentadecane-3,11-dione derivative has mainly an amide (II) character, while the others have an amide (I) character. Moreover, the different substituents do not cause a significant shift of the vibrational mode of the macrocyclic plane. The electronic vertical excitation energy and the oscillator strength were determined with the help of TDDFT calculations and by employing pure (BLYP) and hybrid (B3LYP, B3P86, and mPW1PW91) functionals together with the 6-31G(d) basis set. The BLYP functional reproduces the UV-vis absorption spectra better than the B3LYP, B3P86, or mPW1PW91 hybrid functionals. A dimolecular model, which considers hydrogen-bonded structures, proved that strong inter- and intramolecular hydrogen bonds are present in these compounds. Due to the transannular effect, the UV-vis absorption spectrum of macrocyclic dioxotetraamines is completely different from that of single amide compounds.  相似文献   

14.
《Vibrational Spectroscopy》2007,43(2):333-340
Harmonic and anharmonic vibrations of free nicotinamide (NIA) and picolinamide (PIA) molecules together with their hydrogen bonded complexes H2O–NIA and H2O–PIA have been studied by means of density functional method. The calculation results of the vibrational spectra of free molecules have been investigated and are compared to the available experimental spectra. The vibrational wavenumbers of both molecules have also been calculated by polarizable continuum model (PCM) that represents the solvent as a polarizable continuum and places the solute in a cavity within the solvent (water is chosen as the solvent in this study). The results of PCM calculations and the H2O–NIA, H2O–PIA complexes, are used to investigate the H-bonding interactions of both molecules with the water molecule. The harmonic wavenumbers have been scaled by proper factors obtained by comparing the observed versus calculated wavenumbers and it is shown that anharmonic corrections on the vibrational spectra provided a better agreement between the observed and calculated wavenumbers compared to the results obtained by scaling factor method.  相似文献   

15.
The Fourier transform Raman and Fourier transform infrared spectra of 2-amino-5-iodopyridine were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by HF and DFT (B3LYP) methods with the 6-31G(d,p) basis set for C, N, H and LANL2DZ pseudopotential for I. The scaled theoretical wavenumbers showed very good agreement with the experimental ones. A detailed interpretation of the infrared and Raman spectra of 2-amino-5-iodopyridine is reported on the basis of the calculated potential energy distribution. The theoretical spectrograms for the IR spectrum of the title molecule have been constructed.  相似文献   

16.
The Fourier transform Raman and Fourier transform infrared spectra of p-bromophenoxyacetic acid were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by HF and DFT (B3LYP) method with the 6-31G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental ones. A detailed interpretation of the infrared and Raman spectra of p-bromophenoxyacetic acid is reported on the basis of the calculated potential energy distribution. The theoretical spectrograms for the IR spectrum of the title molecule have been constructed.  相似文献   

17.
The gas phase infrared spectrum of 3-aminoacetophenone (3AAP) was measured in the range 5000-500cm(-1) and with a resolution of 0.5cm(-1). The Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectra of 3AAP were recorded in the solid phase. Geometry optimizations were done without any constraint and several thermodynamic parameters were calculated for the minimum energy conformer at ab initio and density functional theory (DFT) levels invoking 6-311G(2df 2p) basis set and the results are compared with the experimental values. Harmonic-vibrational wavenumber was also calculated for the minimum energy conformer at ab initio and DFT levels using 6-31G(d,p) basis set and the results are compared with related molecules. With the help of specific scaling procedures, the observed vibrational wavenumbers in gas phase, FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range, the error obtained was in general very low. The appropriate theoretical spectrogram for the FT-IR spectra of the title molecule is also constructed.  相似文献   

18.
Fourier transform infrared and Fourier transform Raman spectra of n-C(3)H(7) and i-C(3)H(7) dialkylphosphonates have been obtained. Semiempirical AM1 and the ab initio orbital molecular RHF/6-31G* theories have been used to study the molecular geometry, and the harmonic vibrational spectra with the purpose to assist the experimental assignments of these compounds. An extensive discussion on the assignment of the C-C, C-O, P-O and P=O stretching is carried out based on experimental data of compounds which have the propyl and isopropyl groups, as well as comparing the vibrational spectra of propane. Most of the RHF/6-31G* and AM1 results, once applied the appropriate scaling factor, showed an excellent agreement with the experimental wavenumbers. A few calculated frequencies related to CC and CO stretching do not agree well with the experimental trends.  相似文献   

19.
Animesh K. Ojha   《Chemical physics》2007,340(1-3):69-78
The surface enhanced Raman spectra of tyrosine in colloidal Ag solution have been recorded over a range of pH. A line shape analysis of the bands at 1359, 1505 and 1577 cm−1 was performed between pH 3.5 and 8.5. The variation of spectral linewidth (FWHM) of the band at 1359 cm−1 with pH is explained in terms of two mechanisms in solution: (i) the fluctuation of the pH of a microscopic volume in a solution with an overall uniform pH and/or (ii) the role of changing viscosity and solvation at different pH values due to the intermolecular ionic interactions between different charged states of the tyrosine molecule. The blue shift in three bands with increasing pH has been explained in terms of charge transfer between the different charged states of tyrosine and metal ions upon chemisorption. The experimental spectra are compared with ab initio/DFT calculations of vibrational wavenumbers, bond geometries, binding energy and charge distributions obtained by means of Hartree–Fock (HF) analysis, the nonlocal density functional method (BLYP) and the hybrid functional method (B3LYP). Two basis sets, CEP-31G and lanl2DZ, were used for all calculations.  相似文献   

20.
The experimental and theoretical study on the structures and vibrations of 1,3-bis(4-pyridyl)propane are presented. The FT-IR and Raman spectra of molecule have been measured. The optimized geometric bond lengths have been obtained by DFT show the best agreements with experimental values. The harmonic vibrational frequencies were calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. Majority of the computed wavenumbers were found to be in good agreement with experimental observations. A complete assignment of the fundamentals was proposed based on the total energy distribution (TED) calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号