首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For two integers l 0 and k ≥ 0,define C(l,k) to be the family of 2-edge connected graphs such that a graph G ∈ C(l,k) if and only if for every bond S-E(G) with |S| ≤ 3,each component of G-S has order at least(|V(G)|-k)/l.In this note we prove that if a 3-edge-connected simple graph G is in C(10,3),then G is supereulerian if and only if G cannot be contracted to the Petersen graph.Our result extends an earlier result in [Supereulerian graphs and Petersen graph.JCMCC 1991,9:79-89] by Chen.  相似文献   

2.
设G是无向无环的有限图 ,若G有一个生成子图是欧拉图 (Euler) ,则称G是超欧拉图 (Supereulerian) .本文不利用收缩方法 ,直接证明了 :当图G至多差一边有两棵边不相交的生成树时 ,G是超欧拉图或者G有割边 .  相似文献   

3.
Let A be an abelian group with |A|?≥ 4. For integers k and l with k?>?0 and l?≥ 0, let ${{\mathcal C}(k, l)}$ denote the family of 2-edge-connected graphs G such that for each edge cut ${S\subseteq E(G)}$ with two or three edges, each component of G ? S has at least (|V(G)| ? l)/k vertices. In this paper, we show that if G is 3-edge-connected and ${G\in {\mathcal C}(6,5)}$ , then G is not A-connected if and only if G can be A-reduced to the Petersen graph.  相似文献   

4.
Group Connectivity of 3-Edge-Connected Chordal Graphs   总被引:3,自引:0,他引:3  
Let A be a finite abelian group and G be a digraph. The boundary of a function f: E(G)ZA is a function ‘f: V(G)ZA given by ‘f(v)=~e leaving vf(e)m~e entering vf(e). The graph G is A-connected if for every b: V(G)ZA with ~v] V(G) b(v)=0, there is a function f: E(G)ZA{0} such that ‘f=b. In [J. Combinatorial Theory, Ser. B 56 (1992) 165-182], Jaeger et al showed that every 3-edge-connected graph is A-connected, for every abelian group A with |A|̈́. It is conjectured that every 3-edge-connected graph is A-connected, for every abelian group A with |A|̓ and that every 5-edge-connected graph is A-connected, for every abelian group A with |A|́.¶ In this note, we investigate the group connectivity of 3-edge-connected chordal graphs and characterize 3-edge-connected chordal graphs that are A-connected for every finite abelian group A with |A|́.  相似文献   

5.
A graph G has a tank-ring factor F if F is a connected spanning subgraph with all vertices of degree 2 or 4 that consists of one cycle C and disjoint triangles attaching to exactly one vertex of C such that every component of G ? C contains exactly two vertices. In this paper, we show the following results. (1) Every supereulerian claw-free graph G with 1-hourglass property contains a tank-ring factor. (2) Every supereulerian claw-free graph with 2-hourglass property is Hamiltonian.  相似文献   

6.
A graph with n vertices is said to have a small cycle cover provided its edges can be covered with at most (2n ? 1)/3 cycles. Bondy [2] has conjectured that every 2-connected graph has a small cycle cover. In [3] Lai and Lai prove Bondy’s conjecture for plane triangulations. In [1] the author extends this result to all planar 3-connected graphs, by proving that they can be covered by at most (n + 1)/2 cycles. In this paper we show that Bondy’s conjecture holds for all planar 2-connected graphs. We also show that all planar 2-edge-connected graphs can be covered by at most (3n ? 3)/4 cycles and we show an infinite family of graphs for which this bound is attained.  相似文献   

7.
8.
最小次数至少为4的超欧拉图   总被引:4,自引:0,他引:4  
设G是2-边-连通的n阶图。假设对任何的的最小边割集E等于包含于E(G)且│E│≤3,G-E的每个分支的阶至少为n/5,则或者G是一个超欧拉图或者G有5个互不相交的阶数为n/5连通分支,当这5个分支都收缩时,G收缩为K2,3,这个结果推广了蔡小涛,P.A.Catlin,F.Jaeger和H.J.Lai等人关于超欧拉图的结果。  相似文献   

9.
An undirected graph G = (V, E) is called \mathbbZ3{\mathbb{Z}_3}-connected if for all b: V ? \mathbbZ3{b: V \rightarrow \mathbb{Z}_3} with ?v ? Vb(v)=0{\sum_{v \in V}b(v)=0}, an orientation D = (V, A) of G has a \mathbbZ3{\mathbb{Z}_3}-valued nowhere-zero flow f: A? \mathbbZ3-{0}{f: A\rightarrow \mathbb{Z}_3-\{0\}} such that ?e ? d+(v)f(e)-?e ? d-(v)f(e)=b(v){\sum_{e \in \delta^+(v)}f(e)-\sum_{e \in \delta^-(v)}f(e)=b(v)} for all v ? V{v \in V}. We show that all 4-edge-connected HHD-free graphs are \mathbbZ3{\mathbb{Z}_3}-connected. This extends the result due to Lai (Graphs Comb 16:165–176, 2000), which proves the \mathbbZ3{\mathbb{Z}_3}-connectivity for 4-edge-connected chordal graphs.  相似文献   

10.
In this paper, we prove that if G is a plane graph without 4-, 5- and 7-circuits and without intersecting triangles, then for each face f of degree at most 11, any 3-coloring of the boundary of f can be extended to G. This gives a positive support to a conjecture of Borodin and Raspaud which claims that each plane graph without 5-circuits and intersecting triangles is 3-colorable.  相似文献   

11.
For integers k0,r0,a(k,r)-coloring of a graph G is a proper k-coloring of the vertices such that every vertex of degree d is adjacent to vertices with at least min{d,r}diferent colors.The r-hued chromatic number,denoted byχr(G),is the smallest integer k for which a graph G has a(k,r)-coloring.Define a graph G is r-normal,ifχr(G)=χ(G).In this paper,we present two sufcient conditions for a graph to be 3-normal,and the best upper bound of 3-hued chromatic number of a certain families of graphs.  相似文献   

12.
 Let G be a 3-connected graph of order n and S a subset of vertices. Denote by δ(S) the minimum degree (in G) of vertices of S. Then we prove that the circumference of G is at least min{|S|, 2δ(S)} if the degree sum of any four independent vertices of S is at least n+6. A cycle C is called S-maximum if there is no cycle C with |C S|>|CS|. We also show that if ∑4 i=1 d(a i)≥n+3+|⋂4 i=1 N(a i)| for any four independent vertices a 1, a 2, a 3, a 4 in S, then G has an S-weak-dominating S-maximum cycle C, i.e. an S-maximum cycle such that every component in GC contains at most one vertex in S. Received: March 9, 1998 Revised: January 7, 1999  相似文献   

13.
Nebeský in [12] show that for any simple graph with n ≥ 5 vertices, either G or Gc contains an eulerian subgraph with order at least n - 1, with an explicitly described class of exceptional graphs. In this note, we show that if G is a simple graph with n ≥ 61 vertices, then either G or Gc is supereulerian, with some exceptions. We also characterize all these exceptional cases. These results are applied to show that if G is a simple graph with n ≥ 61 vertices such that both G and Gc are connected, then either G or Gc has a 4-flow, or both G and Gc have cut-edges. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Lai, Shao and Zhan (J Graph Theory 48:142–146, 2005) showed that every 3-connected N 2-locally connected claw-free graph is Hamiltonian. In this paper, we generalize this result and show that every 3-connected claw-free graph G such that every locally disconnected vertex lies on some induced cycle of length at least 4 with at most 4 edges contained in some triangle of G is Hamiltonian. It is best possible in some sense.  相似文献   

15.
Let C be a longest cycle in the 3-connected graph G and let H be a component of G - V(C) such that ¦V(H)¦≥ 3. We supply estimates of the form ¦C¦ ≥ 2d(u) + 2d(v) ? a (4 ≤ a ≤ 8), where u, v are suitably chosen non-adjacent vertices in G.  相似文献   

16.
 An edge e in a simple 3-connected graph is deletable (simple-contractible) if the deletion G\e (contraction G/e) is both simple and 3-connected. Suppose a, b, and c are three non-negative integers. If there exists a simple 3-connected graph with exactly a edges which are deletable but not simple-contractible, exactly b edges which are simple-contractible but not deletable, and exactly c edges which are both deletable and simple-contractible, then we call the triple (a, b, c) realizable, and such a graph is said to be an (a, b, c)-graph. Tutte's Wheels Theorem says the only (0, 0, 0)-graphs are the wheels. In this paper, we characterize the (a, b, c) realizable triples for which at least one of a + b≤2, c=0, and c≥16 holds. Received: February 12, 1997 Revised: February 13, 1998  相似文献   

17.
A digraph D is supereulerian if D has a spanning closed ditrail. Bang‐Jensen and Thomassé conjectured that if the arc‐strong connectivity of a digraph D is not less than the independence number , then D is supereulerian. A digraph is bipartite if its underlying graph is bipartite. Let be the size of a maximum matching of D. We prove that if D is a bipartite digraph satisfying , then D is supereulerian. Consequently, every bipartite digraph D satisfying is supereulerian. The bound of our main result is best possible.  相似文献   

18.
19.
A digraph D is supereulerian if D has a spanning eulerian subdigraph. BangJensen and Thomass′e conjectured that if the arc-strong connectivity λ(D) of a digraph D is not less than the independence number α(D), then D is supereulerian. In this paper, we prove that if D is an extended cycle, an extended hamiltonian digraph, an arc-locally semicomplete digraph, an extended arc-locally semicomplete digraph, an extension of two kinds of eulerian digraph, a hypo-semicomplete digraph or an extended hypo-semicomplete digraph satisfyingλ(D) ≥α(D), then D is supereulerian.  相似文献   

20.
 We prove that each 3-connected plane graph G without triangular or quadrangular faces either contains a k-path P k , a path on k vertices, such that each of its k vertices has degree ≤5/3k in G or does not contain any k-path. We also prove that each 3-connected pentagonal plane graph G which has a k-cycle, a cycle on k vertices, k∈ {5,8,11,14}, contains a k-cycle such that all its vertices have, in G, bounded degrees. Moreover, for all integers k and m, k≥ 3, k∉ {5,8,11,14} and m≥ 3, we present a graph in which every k-cycle contains a vertex of degree at least m. Received: June 29, 1998 Final version received: April 11, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号