首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
   Abstract. Let P be a set of points in general position in the plane. We say that P is k -convex if no triangle determined by P contains more than k points of P in the interior. We say that a subset A of P in convex position forms an empty polygon (in P ) if no point of P \ A lies in the convex hull of A . We show that for any k,n there is an N=N(k,n) such that any k -convex set of at least N points in general position in the plane contains an empty n -gon. We also prove an analogous statement in R d for each odd d≥ 3 .  相似文献   

2.
An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer k≥1, let g(k) be the smallest integer such that every planar point set in general position with at least g(k) interior points has a convex subset of points with exactly k interior points of P. In this article, we prove that g(3)=9.  相似文献   

3.
 The main result of the papzer is that any planar graph with odd girth at least 10k−7 has a homomorphism to the Kneser graph G k 2 k +1, i.e. each vertex can be colored with k colors from the set {1,2,…,2k+1} so that adjacent vertices have no colors in common. Thus, for example, if the odd girth of a planar graph is at least 13, then the graph has a homomorphism to G 2 5, also known as the Petersen graph. Other similar results for planar graphs are also obtained with better bounds and additional restrictions. Received: June 14, 1999 Final version received: July 5, 2000  相似文献   

4.
Ak-tree is ak-uniform hypergraph constructed from a single edge by the successive addition of edges each containing a new vertex andk−1 vertices of an existing edge. We show that ifD is any finite set of positive integers which includes 1, thenD is the set of vertex degrees of somek-tree fork=2, 3, and 4, and that there is precisely one such set,D={1, 4, 6}, which is not the set of degrees of any 5-tree. We also show for eachk≧2 that such a setD is the set of degrees of somek-tree provided only thatD contains some elementd which satisfiesdk (k−1)−2 [k/2]+3.  相似文献   

5.
A hypergraph is simple if it has no two edges sharing more than a single vertex. It is s‐list colorable (or s‐choosable) if for any assignment of a list of s colors to each of its vertices, there is a vertex coloring assigning to each vertex a color from its list, so that no edge is monochromatic. We prove that for every positive integer r, there is a function dr(s) such that no r‐uniform simple hypergraph with average degree at least dr(s) is s‐list‐colorable. This extends a similar result for graphs, due to the first author, but does not give as good estimates of dr(s) as are known for d2(s), since our proof only shows that for each fixed r ≥ 2, dr(s) ≤ 2 We use the result to prove that for any finite set of points X in the plane, and for any finite integer s, one can assign a list of s distinct colors to each point of the plane so that any coloring of the plane that colors each point by a color from its list contains a monochromatic isometric copy of X. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

6.
   Abstract. The regression depth of a hyperplane with respect to a set of n points in \Real d is the minimum number of points the hyperplane must pass through in a rotation to vertical. We generalize hyperplane regression depth to k -flats for any k between 0 and d-1 . The k=0 case gives the classical notion of center points. We prove that for any k and d , deep k -flats exist, that is, for any set of n points there always exists a k -flat with depth at least a constant fraction of n . As a consequence, we derive a linear-time (1+ɛ) -approximation algorithm for the deepest flat. We also show how to compute the regression depth in time O(n d-2 +nlog n) when 1≤ k≤ d-2 .  相似文献   

7.
We show that the vertices of any plane graph in which every face is incident to at least g vertices can be colored by (3g−5)/4 colors so that every color appears in every face. This is nearly tight, as there are plane graphs where all faces are incident to at least g vertices and that admit no vertex coloring of this type with more than (3g+1)/4 colors. We further show that the problem of determining whether a plane graph admits a vertex coloring by k colors in which all colors appear in every face is in ℘ for k=2 and is -complete for k=3,4. We refine this result for polychromatic 3-colorings restricted to 2-connected graphs which have face sizes from a prescribed (possibly infinite) set of integers. Thereby we find an almost complete characterization of these sets of integers (face sizes) for which the corresponding decision problem is in ℘, and for the others it is -complete. Research of N. Alon was supported in part by the Israel Science Foundation, by a USA–Israeli BSF grant, and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. Research of R. Berke was supported in part by JSPS Global COE program “Computationism as a Foundation for the Sciences.” Research of K. Buchin and M. Buchin was supported by the Netherlands’ Organisation for Scientific Research (NWO) under BRICKS/FOCUS project no. 642.065.503. Research of P. Csorba was supported by DIAMANT, an NWO mathematics cluster. Research of B. Speckmann was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 639.022.707.  相似文献   

8.
We consider the following edge coloring game on a graph G. Given t distinct colors, two players Alice and Bob, with Alice moving first, alternately select an uncolored edge e of G and assign it a color different from the colors of edges adjacent to e. Bob wins if, at any stage of the game, there is an uncolored edge adjacent to colored edges in all t colors; otherwise Alice wins. Note that when Alice wins, all edges of G are properly colored. The game chromatic index of a graph G is the minimum number of colors for which Alice has a winning strategy. In this paper, we study the edge coloring game on k‐degenerate graphs. We prove that the game chromatic index of a k‐degenerate graph is at most Δ + 3k − 1, where Δ is the maximum vertex degree of the graph. We also show that the game chromatic index of a forest of maximum degree 3 is at most 4 when the forest contains an odd number of edges. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 144–155, 2001  相似文献   

9.
A proper total coloring of a graph G such that there are at least 4 colors on those vertices and edges incident with a cycle of G, is called acyclic total coloring. The acyclic total chromatic number of G is the least number of colors in an acyclic total coloring of G. In this paper, it is proved that the acyclic total chromatic number of a planar graph G of maximum degree at least k and without l cycles is at most Δ(G) + 2 if (k, l) ∈ {(6, 3), (7, 4), (6, 5), (7, 6)}.  相似文献   

10.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a′(G) ≤ Δ(G) + 2 for any graphs. In this paper, it is shown that the conjecture holds for planar graphs without 4- and 5-cycles or without 4- and 6-cycles.  相似文献   

11.
A finite planar set is k-isosceles for k≥3 if every k-point subset of the set contains a point equidistant from two others. We show that an 8-set on a line is 5-isosceles if and only if its adjacent interpoint distances are equal to each other, and no 5-isosceles 9-set has 9 points on a line. We also show that the maximum 5-isosceles set with 8 points on a line contains at most 10 points.  相似文献   

12.
In 1976, Borodin conjectured that every planar graph has a 5‐coloring such that the union of every k color classes with 1 ≤ k ≤ 4 induces a (k—1)‐degenerate graph. We prove the existence of such a coloring using 18 colors. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:139–147, 2008  相似文献   

13.
Let P be a planar point set with no three points collinear; k points of P form a k-hole of P if these k points are the vertices of a convex polygon whose interior contains no points of P. Inthis article, we prove that any planar point set containing at least 13 points with no three points collinear contains pairwise disjoint 3-, 4-, and 5-holes if there exists a separating line SL4.  相似文献   

14.
The d-distance face chromatic number of a connected plane graph is the minimum number of colors in such a coloring of its faces that whenever two distinct faces are at the distance at most d, they receive distinct colors. We estimate 1-distance chromatic number for connected 4-regular plane graphs. We show that 0-distance face chromatic number of any connected multi-3-gonal 4-regular plane graphs is 4. © 1995, John Wiley & Sons, Inc.  相似文献   

15.
A graph is (k, d)-colorable if one can color the vertices with k colors such that no vertex is adjacent to more than d vertices of its same color. In this paper we investigate the existence of such colorings in surfaces and the complexity of coloring problems. It is shown that a toroidal graph is (3, 2)- and (5, 1)-colorable, and that a graph of genus γ is (χγ/(d + 1) + 4, d)-colorable, where χγ is the maximum chromatic number of a graph embeddable on the surface of genus γ. It is shown that the (2, k)-coloring, for k ≥ 1, and the (3, 1)-coloring problems are NP-complete even for planar graphs. In general graphs (k, d)-coloring is NP-complete for k ≥ 3, d ≥ 0. The tightness is considered. Also, generalizations to defects of several algorithms for approximate (proper) coloring are presented. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
We study several coloring problems for geometric range-spaces. In addition to their theoretical interest, some of these problems arise in sensor networks. Given a set of points in ?2 or ?3, we want to color them so that every region of a certain family (e.g., every disk containing at least a certain number of points) contains points of many (say, k) different colors. In this paper, we think of the number of colors and the number of points as functions of k. Obviously, for a fixed k using k colors, it is not always possible to ensure that every region containing k points has all colors present. Thus, we introduce two types of relaxations: either we allow the number of colors used to increase to c(k), or we require that the number of points in each region increases to p(k).Symmetrically, given a finite set of regions in ?2 or ?3, we want to color them so that every point covered by a sufficiently large number of regions is contained in regions of k different colors. This requires the number of covering regions or the number of allowed colors to be greater than k.The goal of this paper is to bound these two functions for several types of region families, such as halfplanes, halfspaces, disks, and pseudo-disks. This is related to previous results of Pach, Tardos, and Tóth on decompositions of coverings.  相似文献   

17.
We prove that coloring a 3-uniform 2-colorable hypergraph with c colors is NP-hard for any constant c. The best known algorithm [20] colors such a graph using O(n1/5) colors. Our result immediately implies that for any constants k ≥ 3 and c2 > c1 > 1, coloring a k-uniform c1-colorable hypergraph with c2 colors is NP-hard; the case k = 2, however, remains wide open. This is the first hardness result for approximately-coloring a 3-uniform hypergraph that is colorable with a constant number of colors. For k ≥ 4 such a result has been shown by [14], who also discussed the inherent difference between the k = 3 case and k ≥ 4. Our proof presents a new connection between the Long-Code and the Kneser graph, and relies on the high chromatic numbers of the Kneser graph [19,22] and the Schrijver graph [26]. We prove a certain maximization variant of the Kneser conjecture, namely that any coloring of the Kneser graph by fewer colors than its chromatic number, has ‘many’ non-monochromatic edges. * Research supported by NSF grant CCR-9987845. † Supported by an Alon Fellowship and by NSF grant CCR-9987845. ‡ Work supported in part by NSF grants CCF-9988526 and DMS 9729992, and the State of New Jersery.  相似文献   

18.
For a bounded integer , we wish to color all edges of a graph G so that any two edges within distance have different colors. Such a coloring is called a distance-edge-coloring or an -edge-coloring of G. The distance-edge-coloring problem is to compute the minimum number of colors required for a distance-edge-coloring of a given graph G. A partial k-tree is a graph with tree-width bounded by a fixed constant k. We first present a polynomial-time exact algorithm to solve the problem for partial k-trees, and then give a polynomial-time 2-approximation algorithm for planar graphs.  相似文献   

19.
Given a graph G, a total k‐coloring of G is a simultaneous coloring of the vertices and edges of G with at most k colors. If Δ(G) is the maximum degree of G, then no graph has a total Δ‐coloring, but Vizing conjectured that every graph has a total (Δ + 2)‐coloring. This Total Coloring Conjecture remains open even for planar graphs. This article proves one of the two remaining planar cases, showing that every planar (and projective) graph with Δ ≤ 7 has a total 9‐coloring by means of the discharging method. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 67–73, 1999  相似文献   

20.
Abstract. Let P be a set of points in general position in the plane. We say that P is k -convex if no triangle determined by P contains more than k points of P in the interior. We say that a subset A of P in convex position forms an empty polygon (in P ) if no point of P \ A lies in the convex hull of A . We show that for any k,n there is an N=N(k,n) such that any k -convex set of at least N points in general position in the plane contains an empty n -gon. We also prove an analogous statement in R d for each odd d≥ 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号