首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
A model for cleaning a graph with brushes was recently introduced. Let α = (v 1, v 2, . . . , v n ) be a permutation of the vertices of G; for each vertex v i let ${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}} and N-(vi)={j: vj vi ? E and j <  i}{N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}} ; finally let ba(G)=?i=1n max{|N+(vi)|-|N-(vi)|,0}{b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}. The Broom number is given by B(G) =  max α b α (G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most n(d+2?{d ln2})/4{n(d+2\sqrt{d \ln 2})/4} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \fracn4(d+Q(?d)){\frac{n}{4}(d+\Theta(\sqrt{d}))}.  相似文献   

2.
A path in an edge-colored graph G, where adjacent edges may be colored the same, is called a rainbow path if no two edges of it are colored the same. A nontrivial connected graph G is rainbow connected if for any two vertices of G there is a rainbow path connecting them. The rainbow connection number of G, denoted rc(G), is defined as the smallest number of colors such that G is rainbow connected. In this paper, we mainly study the rainbow connection number rc(L(G)) of the line graph L(G) of a graph G which contains triangles. We get two sharp upper bounds for rc(L(G)), in terms of the number of edge-disjoint triangles of G. We also give results on the iterated line graphs.  相似文献   

3.
In this paper, we study the character graph Δ(G) of a finite solvable group G. We prove that sum of the chromatic number of Δ(G) and the matching number of complement graph of Δ(G) is equal to the order of Δ(G). Also, we prove that when Δ(G) is not a block, the chromatic number of Δ(G) is equal to the clique number of Δ(G).  相似文献   

4.
Exploring Unknown Undirected Graphs   总被引:1,自引:0,他引:1  
A robot has to construct a complete map of an unknown environment modeled as an undirected connected graph. The task is to explore all nodes and edges of the graph using the minimum number of edge traversals. The penalty of an exploration algorithm running on a graph G = (V(G), E(G)) is the worst-case number of traversals in excess of the lower bound |E(G)| that it must perform in order to explore the entire graph. We give an exploration algorithm whose penalty is O(|V(G)|) for every graph. We also show that some natural exploration algorithms cannot achieve this efficiency.  相似文献   

5.
Let G be a planar graph. The vertex face total chromatic number χ13(G) of G is the least number of colors assigned to V(G)∪F(G) such that no adjacent or incident elements receive the same color. The main results of this paper are as follows: (1) We give the vertex face total chromatic number for all outerplanar graphs and modulus 3-regular maximal planar graphs. (2) We prove that if G is a maximal planar graph or a lower degree planar graph, i.e., ∠(G) ≤ 3, then χ13(G) ≤ 6. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Let t(G) be the number of spanning trees of a connected graph G, and let b(G) be the number of bases of the bicircular matroid B(G). In this paper we obtain bounds relating b(G) and t(G), and study in detail the case where G is a complete graph Kn or a complete bipartite graph Kn,m.Received April 25, 2003  相似文献   

7.
An oriented walk double covering of a graph G is a set of oriented closed walks, that, traversed successively, combined will have traced each edge of G once in each direction. A bidirectional double tracing of a graph G is an oriented walk double covering that consists of a single closed walk. A retracting in a closed walk is the immediate succession of an edge by its inverse. Every graph with minimum degree 2 has a retracting free oriented walk double covering and every connected graph has a bidirectional double tracing. The minimum number of closed walks in a retracting free oriented walk double covering of G is denoted by c(G). The minimum number of retractings in a bidirectional double tracing of G is denoted by r(G). We shall prove that for all connected noncycle graphs G with minimum degree at least 2, r(G) = c(G) − 1. The problem of characterizing those graphs G for which r(G) = 0 was raised by Ore. Thomassen solved this problem by relating it to the existence of certain spanning trees. We generalize this result, and relate the parameters r(G), c(G) to spanning trees of G. This relation yields a polynomial time algorithm to determine the parameters c(G) and r(G). © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 89–102, 1998  相似文献   

8.
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

9.
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G. For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined as the maximum a(G) over all the graphs GF. In this paper we show that a(F)=8 where F is the family of graphs of maximum degree 5 and give a linear time algorithm to achieve this bound.  相似文献   

10.
For a graph G, let g(G) and σg(G) denote, respectively, the girth of G and the number of cycles of length g(G) in G. In this paper, we first obtain an upper bound for σg(G) and determine the structure of a 2-connected graph G when σg(G) attains the bound. These extremal graphs are then more-or-less classified, but one case leads to an unsolved problem. The structural results are finally applied to show that certain families of graphs are chromatically unique.  相似文献   

11.
Let G be a connected graph. The subdivision graph of G, denoted by S(G), is the graph obtained from G by inserting a new vertex into every edge of G. The triangulation graph of G, denoted by R(G), is the graph obtained from G by adding, for each edge uv, a new vertex whose neighbours are u and v. In this paper, we first provide complete information for the eigenvalues and eigenvectors of the probability transition matrix of a random walk on S(G) (res. R(G)) in terms of those of G. Then we give an explicit formula for the expected hitting time between any two vertices of S(G) (res. R(G)) in terms of those of G. Finally, as applications, we show that, the relations between the resistance distances, the number of spanning trees and the multiplicative degree-Kirchhoff index of S(G) (res. R(G)) and G can all be deduced from our results directly.  相似文献   

12.
choice number of a graph G is the minimum integer k such that for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). It is shown that the choice number of the random graph G(n, p(n)) is almost surely whenever . A related result for pseudo-random graphs is proved as well. By a special case of this result, the choice number (as well as the chromatic number) of any graph on n vertices with minimum degree at least in which no two distinct vertices have more than common neighbors is at most . Received: October 13, 1997  相似文献   

13.
In 1970, Folkman proved that for any graph G there exists a graph H with the same clique number as G. In addition, any r ‐coloring of the vertices of H yields a monochromatic copy of G. For a given graph G and a number of colors r let f(G, r) be the order of the smallest graph H with the above properties. In this paper, we give a relatively small upper bound on f(G, r) as a function of the order of G and its clique number. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 40, 493–500, 2012  相似文献   

14.
The critical group C(G) of a graph G is a refinement of the number of spanning trees of the graph and is closely connected with the Laplacian matrix. Let r(G) be the minimum number of generators (i.e., the rank) of the group C(G) and β(G) be the number of independent cycles of G. In this paper, some forbidden induced subgraphs are given for r(G) = n − 3 and all graphs with r(G) = β(G) = n − 3 are characterized.  相似文献   

15.
A proper vertex coloring of a 2-connected plane graph G is a parity vertex coloring if for each face f and each color c, the total number of vertices of color c incident with f is odd or zero. The minimum number of colors used in such a coloring of G is denoted by χp(G).In this paper we prove that χp(G)≤12 for every 2-connected outerplane graph G. We show that there is a 2-connected outerplane graph G such that χp(G)=10. If a 2-connected outerplane graph G is bipartite, then χp(G)≤8, moreover, this bound is best possible.  相似文献   

16.
The skewness of a graph G is the minimum number of edges in G whose removal results in a planar graph. In this paper, we determine the skewness of the generalized Petersen graph P(4k, k) and hence a lower bound for the crossing number of P(4k, k). In addition, an upper bound for the crossing number of P(4k, k) is also given.  相似文献   

17.
Let γ(G) and ir(G) denote the domination number and the irredundance number of a graph G, respectively. Allan and Laskar [Proc. 9th Southeast Conf. on Combin., Graph Theory & Comp. (1978) 43–56] and Bollobás and Cockayne [J. Graph Theory (1979) 241–249] proved independently that γ(G) < 2ir(G) for any graph G. For a tree T, Damaschke [Discrete Math. (1991) 101–104] obtained the sharper estimation 2γ(T) < 3ir(T). Extending Damaschke's result, Volkmann [Discrete Math. (1998) 221–228] proved that 2γ(G) ≤ 3ir(G) for any block graph G and for any graph G with cyclomatic number μ(G) ≤ 2. Volkmann also conjectured that 5γ(G) < 8ir(G) for any cactus graph. In this article we show that if G is a block-cactus graph having π(G) induced cycles of length 2 (mod 4), then γ(G)(5π(G) + 4) ≤ ir(G)(8π(G) + 6). This result implies the inequality 5γ(G) < 8ir(G) for a block-cactus graph G, thus proving the above conjecture. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 139–149, 1998  相似文献   

18.
A set S of vertices of a graph G is a geodetic set if every vertex of G lies in an interval between two vertices from S. The size of a minimum geodetic set in G is the geodetic number g(G) of G. We find that the geodetic number of the lexicographic product G°H for a non-complete graph H lies between 2 and 3g(G). We characterize the graphs G and H for which g(G°H)=2, as well as the lexicographic products T°H that enjoy g(T°H)=3g(G), when T is isomorphic to a tree. Using a new concept of the so-called geodominating triple of a graph G, a formula that expresses the exact geodetic number of G°H is established, where G is an arbitrary graph and H a non-complete graph.  相似文献   

19.
A set S of vertices in a graph G is a packing if the vertices in S are pairwise at distance at least 3 apart in G. The packing number of G, denoted by ρ(G), is the maximum cardinality of a packing in G. Favaron [Discrete Math. 158 (1996), 287–293] showed that if G is a connected cubic graph of order n different from the Petersen graph, then ρ(G) ≥ n/8. In this paper, we generalize Favaron’s result. We show that for k ≥ 3, if G is a connected k-regular graph of order n that is not a diameter-2 Moore graph, then ρ(G) ≥ n/(k2 ? 1).  相似文献   

20.
Let G be a connected plane graph, D(G) be the corresponding link diagram via medial construction, and μ(D(G)) be the number of components of the link diagram D(G). In this paper, we first provide an elementary proof that μ(D(G))≤n(G)+1, where n(G) is the nullity of G. Then we lay emphasis on the extremal graphs, i.e. the graphs with μ(D(G))=n(G)+1. An algorithm is given firstly to judge whether a graph is extremal or not, then we prove that all extremal graphs can be obtained from K1 by applying two graph operations repeatedly. We also present a dual characterization of extremal graphs and finally we provide a simple criterion on structures of bridgeless extremal graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号