首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.  相似文献   

2.
On the propagation of resonant radiation through an optically dense system, photon capture is commonly followed by one or more near-field transfers of the resulting optical excitation. The process invokes secondary changes to the local electronic environment, shifting the electromagnetic interactions between participant chromophores and producing modified intermolecular forces. From the theory it emerges that energy transfer, when it occurs between chromophores with electronically dissimilar properties, can itself generate significant changes in the intermolecular potentials. This report highlights specific effects that can be anticipated when laser light propagates across an interface between differentially absorbing components in a model energy transfer system.  相似文献   

3.
Mesostructured silica thin films and particles provide highly versatile supports or frameworks for functional materials where a desired function (such as energy transfer, electron transfer, or molecular machines) is induced by molecules deliberately placed in specific regions of the structure. The relatively gentle templated sol–gel synthesis methods allow a wide variety of molecules to be used, and the optical transparency of the framework is very suitable for studies of light-induced functionality. In this paper, three types of functionality are used to obtain fundamental understanding of the materials themselves and to develop active materials that can trap and release molecules from the pores upon command. Photo-induced energy transfer is used to verify that molecules can be placed in specific spatially separated regions of the framework; fluorescence resonance energy transfer is used as a molecular ruler to measure quantitatively the distance between pairs of molecules. Secondly, photo-induced electron transfer is used to obtain fundamental information about the electrical insulating properties of the framework. Finally, two types of molecular machines, a light-driven impeller and a light activated nanovalve, are described. Both machines contain moving parts attached to solid supports and do useful work. The valves trap and release molecules from the mesopores, and the impellers expel molecules from the pores. Applications of the materials to drug delivery and the release of drug molecules inside living cells is described.  相似文献   

4.
Tailored silicon nanopost arrays (NAPA) enable controlled and resonant ion production in laser desorption ionization experiments and have been termed nanophotonic ion sources (Walker et al., J. Phys. Chem. C, 2010, 114, 4835-4840). As the post dimensions are comparable to or smaller than the laser wavelength, near-field effects and localized electromagnetic fields are present in their vicinity. In this contribution, we explore the desorption and ionization mechanism by studying how surface derivatization affects ion yields and fragmentation. We demonstrate that by increasing the laser fluence on derivatized NAPA with less polar surfaces that have decreased interaction energy between the structured silicon substrate and the adsorbate, the spectrum changes from exhibiting primarily molecular ions to showing a growing variety and abundance of fragments. The polarization angle of the laser beam had been shown to dramatically affect the ion yields of adsorbates. For the first time, we report that by rotating the plane of polarization of the desorption laser, the internal energy of the adsorbate can also be modulated resulting in polarization dependent fragmentation. This polarization effect also resulted in selective fragmentation of vitamin B(12). To explore the internal energy of NAPA generated ions, the effect of the post aspect ratios on the laser desorption thresholds and on the internal energy of a preformed ion was studied. Elevated surface temperatures and enhanced near fields in the vicinity of high aspect ratio posts are thought to contribute to desorption and ionization from NAPA. Comparison of the fluence dependence of the internal energies of ions produced from nanoporous silicon and NAPA substrates indicates that surface restructuring or transient melting by the desorption laser is a prerequisite for the former but not for the latter.  相似文献   

5.
In the present work, we analyze the influence of the polarization effects taking place during the course of a 2DIR spectroscopy experiment performed on a molecular system undergoing an intermolecular vibrational energy transfer process. When both donor and acceptor molecules participating in the vibrational energy transfer are embedded in a host solvent, they face rotational diffusion that strongly distorts the resulting 2DIR spectra. It could be expected that the difference between rotational diffusion constants will be of particular interest. For this purpose, the polarization effects are discussed according to the different orderings of the laser-molecule interactions. Next, we study the distortions of the spectra as a function of the rotational diffusion constants of the individual molecules. The knowledge of these polarization effects is relevant to the interpretation of the spectra. Finally, the conclusions reached in this work for a vibrational energy transfer are valid for any other type of third-order optical process performed on the same molecular system.  相似文献   

6.
Helical light fields may carry both orbital angular and spin angular momentum which is respectively associated with their helical wavefronts (optical vortices) and rotating transverse electric fields. Interestingly, these helical light fields interact with materials and the orbital angular momentum of these fields can physically twist a range of materials, including metals, semiconductors, polymers, and liquids. With the aid of spin angular momentum, these fields can also form a range of helical structures. This light-matter interaction based on transfer of angular momentum has the potential to revolutionize industrial processes and enable technologies, such as advanced non-contact and nozzle-free printing. In this review paper, we focus on this printing technique, a process which we herein refer to as optical vortex laser induced forward transfer, and we show how it can be used for the production of next generation printed photonics/electronics/spintronics devices. Herein we review the interactions between the angular momentum of light and materials, and we discuss the ways in which optical vortices can be used to produce a variety of exotic structures. We also discuss the current state-of-the art of laser-induced forward-transfer technologies and detail some of the most novel devices, which have been fabricated using this optical vortex laser induced forward transfer, including hexagonal close-packed photonic-rings and plasmonic nanocores.  相似文献   

7.
The results of the investigations of optical and luminescent properties of PbS suspensions stabilized by high‐molecular polyvinylpyrrolidone are described. Suspensions prepared by liquid colloidal method from sodium sulfide and lead nitrate demonstrate strong luminescence in near infrared spectral range at the excitation by visual light with different wavelengths. It was proposed that Förster resonant energy transfer plays the important role in luminescence properties of closed packed PbS particles. The model, which describes the observed luminescent properties of the suspensions PbS‐stabilized high‐molecular polymer, is proposed. The combination of very wide spectral range of excitation of the luminescence with rather narrow range of light radiation in near infrared spectral range determine wide perspectives of the materials in solar luminescent concentrators and photodetectors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The photochemical processes of singlet-singlet energy transfer and photoinduced electron transfer are important not only in natural and artificial photosynthetic energy conversion, but also in a variety of other scientific and technological applications. Controlling these functions at the molecular level using outside stimuli is an interesting scientific challenge. Photochromes, organic molecules that are isomerized by light between two stable forms, can be covalently linked to other chromophores, and changes in their properties resulting from photoisomerization used to switch electron and energy transfer on or off. Simple single- and double-throw molecular switches have been constructed, as well as Boolean logic gates. Such molecules are potentially useful in light-controlled molecular data processing and storage applications.  相似文献   

9.
分子梭在分子开关、分子逻辑门、信息存储等领域有着潜在的应用价值,是超分子化学领域的研究热点之一。本文综述了光驱动分子梭的研究进展:重点举例介绍了荧光光谱识别法和圆二色光谱识别法这两种识别光驱动分子梭位置状态的方法;阐述了构建光驱动轮烷分子梭的新型方法学,包括光驱动环糊精[2]轮烷和[1]轮烷分子梭的定向合成,举例介绍了光间接驱动的轮烷分子梭,以及光驱动[3]轮烷型分子梭和分子梭聚合物;举例说明了光驱动分子梭的功能性应用,用光驱动分子梭来模拟分子水平的逻辑门,研究光驱动分子梭体系中的能量传递机理,以及非溶液态的光驱动分子梭;并对分子梭今后的发展做了展望。  相似文献   

10.
11.
Energy transfer and electron transfer are both fundamental mechanisms enabling numerous functional materials and applications. While most materials systems employ either energy transfer or electron transfer, the combined effect of energy and electron transfer processes in a single donor/acceptor system remains largely unexplored. Herein, we demonstrated the energy transfer followed by electron transfer(ETET) process in a molecular dyad TPE-NBD. Due to energy transfer, the fluorescence of TPE-NBD was greatly enhanced in non-polar solvents. In contrast, polar solvents activated subsequent electron transfer and markedly quenched the emission of TPE-NBD. Consequently, ETET endows TPE-NBD with significant polarity sensitivities. We expect that employing ETET could generate many functional materials with unprecedented properties, i.e., for single laser powered multicolor fluorescence imaging and sensing.  相似文献   

12.
Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.  相似文献   

13.
We investigate the ultrafast resonant energy transfer of a perylene bisimide dyad by pump-probe spectroscopy, chemical variation, and calculations. This dyad undergoes transfer with near-unit quantum efficiency, although the transition dipole moments of the donor and acceptor are in a perfectly orthogonal arrangement to each other in the equilibrium geometry. According to the point dipole approximation used in Fo?rster theory, no energy transfer should occur. Experimentally we do, however, find an ultrafast transfer time of 9.4 ps. With the transition density cube approach we show that in the orthogonal arrangement the Coulombic interactions do not contribute to the electronic coupling. Through the change of the spacer in both length and chemical character, we can clearly exclude any Dexter-type energy transfer. The temperature effects on the Fo?rster resonant energy transfer rate demonstrate that energy transfer is enabled through low-frequency ground-state vibrations, which break the orthogonal arrangement of the transition dipole moments. The dyads presented here therefore are a first example that shows with extreme clarity the decisive role vibrational motion plays in energy transfer processes.  相似文献   

14.
The rotation of the plane of polarization of linearly polarized light by chiral molecules in solution is due to a forward scattering event. Ordinary optical rotation, a single-photon effect, is independent of intensity. As the light intensity is increased, other effects can appear, such as two-photon scattering or alignment of the molecule by one photon and scattering with a change of polarization by another. Both of these effects result in intensity-dependent (or nonlinear) optical rotation. A polarimeter was used to measure the nonlinear optical rotation of solutions in a heterodyne experiment. No nonlinear optical rotation was found in molecules lacking an absorption band near the laser frequency. In the three pyrimidine nucleosides studied, which do have such an absorption band, a nonlinear optical rotation was identified that was cumulative with each laser pulse. The effect persisted with a time constant that was on the order of seconds and characteristic of the molecule.  相似文献   

15.
Optical response in silver/polyvinylidene fluoride nanocomposite materials with nonspherical inclusions was examined using direct dipolar interband transitions, from density functional theory. We discuss here the dependence of the optical response of the material on the geometry, crystallographic makeup and end-cap morphology of the metallic inclusions, as well as on their orientation relative to the polarization direction of the applied electromagnetic field. Each periodic unit cell contained a single inclusion and a polymer matrix; thus, the composite behaved as a monodisperse, perfectly oriented material. Overall, the spectral location of the composite excitation spectrum was tied to that of the metallic inclusions and correlated well to quantum confinement models for the direction of polarization: As linear size of the inclusion increased in a given direction, the excitation spectrum of light polarized in that direction was red-shifted. The effect of the polymer matrix was also examined. Coulomb repulsion from matrix energy states led to splitting of nanoparticle-based energy levels, and the matrix conduction band became involved in high-energy transitions. These effects led to extensions of the spectra of nanocomposites with less stable {100}–basal plane inclusions to very low excitation energies. Attenuation or redshifting of nanoparticle peaks with high photon energies was also observed for materials with small linear sizes along the excitation direction. Comparisons with experimental and time-dependent density functional theory results suggest that estimating the complex dielectric constant from interband transition dipole moments, in a time-independent fashion, provides reliable qualitative spectra for these systems.  相似文献   

16.
Light possesses momentum, and hence, force is exerted on materials if they absorb and/or scatter light. Laser techniques that use optical forces are currently attracting considerable attention. Optical manipulation for trapping, transporting small particles, and measuring the interparticle force is a representative technique. In addition, photoinduced force microscopy is a promising scanning type of microscopy using optical force. Optical force techniques have recently been used in various fields of research, such as molecular bioscience, organic photochemistry, materials engineering, and molecular fluid dynamics. In these techniques, several types of optical forces such as scattering, absorption, and gradient forces play their respective roles. In this article, we summarize the basics of optical forces and present their elementary expressions for using simplified models of light and matter systems. This will help the readers of this Special Issue to understand how different types of forces are distinguished in the basic expressions used for analyzing the optical force phenomena that appear depending on the light geometry and matter systems. After observing simplified cases of scattering and absorption forces, we introduce general formulae for the optical force and then discuss how different components appear in particular cases of laser geometry and materials.  相似文献   

17.
Optimal control theory is applied to a molecular vibrational system in light of its possible application to quantum computing (QC). We present the numerical results of an ammonia molecular vibrational model system with two modes: a bending mode and an asymmetric stretching mode. We demonstrate logic gates fundamental to QC algorithms, namely Hadamard and controlled-NOT gates. Our results show that averages of population transfers at each gate are above 93% high fidelity. A mode that has a double-well structured potential is found to have many transfer pathways, which facilitates obtaining optimal laser pulses.  相似文献   

18.
The correlation of mechanical properties of polymer materials with those of their molecular constituents is the foundation for their holistic comprehension and eventually for improved material designs and syntheses. Over the last decade, optical force probes (OFPs) were developed, shedding light on various unique mechanical behaviors of materials. The properties of polymers are diverse, ranging from soft hydrogels to ultra-tough composites, from purely elastic rubbers to viscous colloidal solutions, and from transparent glasses to super black dyed coatings. Only very recently, researchers started to develop tailored OFP solutions that account for such material requirements in energy (both light and force), in time, and in their spatially detectable resolution. We here highlight notable recent examples and identify future challenges in this emergent field.  相似文献   

19.
Photochromes are photoswitchable, bistable chromophores which, like transistors, can implement binary logic operations. When several photochromes are combined in one molecule, interactions between them such as energy and electron transfer allow design of simple Boolean logic gates and more complex logic devices with all-photonic inputs and outputs. Selective isomerization of individual photochromes can be achieved using light of different wavelengths, and logic outputs can employ absorption and emission properties at different wavelengths, thus allowing a single molecular species to perform several different functions, even simultaneously. Here, we report a molecule consisting of three linked photochromes that can be configured as AND, XOR, INH, half-adder, half-subtractor, multiplexer, demultiplexer, encoder, decoder, keypad lock, and logically reversible transfer gate logic devices, all with a common initial state. The system demonstrates the advantages of light-responsive molecules as multifunctional, reconfigurable nanoscale logic devices that represent an approach to true molecular information processing units.  相似文献   

20.
Theoretical investigations of charge transport in organic materials are generally based on the "energy splitting in dimer" method and routinely assume that the transport parameters (site energies and transfer integrals) determined from monomer and dimer calculations can be reliably used to describe extended systems. Here, we demonstrate that this transferability can fail even in molecular crystals with weak van der Waals intermolecular interactions, due to the substantial (but often ignored) impact of polarization effects, particularly on the site energies. We show that the neglect of electronic polarization leads to qualitatively incorrect values and trends for the transfer integrals computed with the energy splitting method, even in simple prototypes such as ethylene or pentacene dimers. The polarization effect in these systems is largely electrostatic in nature and can change dramatically upon transition from a dimer to an extended system. For example, the difference in site energy for a prototypical "face-to-edge" one-dimensional stack of pentacene molecules is calculated to be 30% greater than that in the "face-to-edge" dimer, whereas the site energy difference in the pentacene crystal is vanishingly small. Importantly, when computed directly in the framework of localized monomer orbitals, the transfer integral values for dimer and extended systems are very similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号