首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the absence of any trapping agent, stable neopentyl-Pd intermediates can terminate a catalytic cycle by undergoing a regioselective C-H activation, leading to various spiro or fused cyclopropane derivatives in a straightforward manner. If the neopentyl-Pd intermediate contains a heteroatom at a suitable position, C-H activation does not occur and stable palladacycles are isolated.  相似文献   

2.
Giri R  Wasa M  Breazzano SP  Yu JQ 《Organic letters》2006,8(25):5685-5688
A novel route to the synthesis of cyclopropane derivatives is described. 1,1-Dimethyls in 2-(1,1-dimethylalkyl)dimethyloxazolines are first converted into 1,3-diiodide derivatives via Pd-catalyzed sequential C-H activation and then radically cyclized to provide 2-(1-alkylcylclopropyl)dimethyloxazolines. The use of EtOAc as a solvent is crucial for the diiodination of the functionalized substrates. [reaction: see text]  相似文献   

3.
A detailed mechanistic investigation of the intramolecular dirhodium tetracarboxylate-catalyzed sulfamate ester C-H amination reaction is presented. These studies provide support for the formation of a sulfamate-derived iminoiodinane, which reacts rapidly with the rhodium catalyst to generate a nitrenoid-type oxidant. Reactivity patterns, Hammett analysis, kinetic isotope measurement, and a cyclopropane clock experiment are indicative of a concerted, asynchronous transition structure in the product-determining C-H insertion event.  相似文献   

4.
The synthesis of new potential adjuvant saponin aglycons was investigated by selective palladium mediated C-H functionalisation of appropriately functionalised derivatives of lanosterol, cholesterol, and friedelin. The desired equatorial aldehyde functionality was successfully introduced into the lanosterol skeleton as expected. Cyclopalladation of a cholesterol derivative proceeded as expected, but during oxidation of the organopalladium intermediate, participation of the adjacent alkene functionality led to stereoselective formation of a cyclopropane and introduction of an acetate group into the steroid backbone at C-6. Further investigation of this unusual cyclopropane formation on a model decalin system confirmed the result, but C-H activation on a related open chain system was prevented by complexation of the alkene functionality to the palladium.  相似文献   

5.
Studies on reactions of carbenes in reactive organic glasses at low temperatures clearly reveal that solution results and liquid phase mechanistic rules cannot be readily extrapolated to matrix conditions. Thus, the usual course of reaction of a carbene with an alkene in solution results in the formation of a cyclopropane for both the singlet and triplet states although a one-step addition possible for singlet carbene produces the cyclopropane stereospecifically and a stepwise pathway with the triplet state affords two possible stereoisomers of the cyclopropane. In a sharp contrast, the formal insertion products into the allylic C-H bonds of alkenes are produced at the expense of the cyclopropane when carbene is generated in alkene matrix at low temperature. Similar results are obtained in the reaction with alcohols, where the C-H insertion products are formed in low temperature alcoholic matrices at the expense of the O-H insertion products which are predominant products in the reaction with alcoholic solution at ambient temperature. The 13C labelling experiments as well as deuterium kinetic isotope effects suggest that these C-H insertion products are most probably produced from the triplet carbene, not from the singlet, by abstraction of H atom from the matrix followed by the recombination of the resulting radical pairs. Kinetic studies using ESR and laser flash photolysis techniques demonstrate that the mechanism of a H-atom transfer reaction changes from a completely classical process in a soft warm glass to a completely quantum mechanical tunneling process in a cold hard glass. Thus, as the reaction temperature is lowered, the classical reaction rate decreases, and eventually becomes much slower than decay by hydrogen atom tunneling. The members of the radical pairs which usually diffuse apart in a fluid solution are not able to diffuse apart owing to the limited diffusibility within a rigid matrix and therefore recombine with high efficiency to give the CH “insertion” products. A rather surprising and intriguing difference between the C-H insertion undergone by singlet carbenes in fluid solution at ambient temperatures and one by triplet carbenes in matrix at low temperature is noted. Thus, a marked increase in the primary and secondary C-H insertion over the tertiary is observed in the matrix reaction indicating that triplet carbenes tend to abstract H from less crowded C-H bonds. This is interpreted to indicate that the distance between carbenic center and tunneling H becomes important in H atom tunneling process. More surprisingly, the C-H insertion by triplet carbene by the abstraction-recombination mechanism in a rigid matrix proceeds with retention of the configuration, suggesting that the solid state prevents motion of the radicals to the extent that does not allow racemization to occur. Reactions with heteroatom substrates such as ethers, amines, alkyl halides and ketones are also subject to the matrix effects and the C-H insertion products increase at the expense of singlet carbene reaction products resulting from the interaction with the heteroatoms. Stereoselectivities of cyclopropanation to styrenes are also shown to be affected by the matrix effects. t-Butyl alcohol matrix is shown to be unreactive toward carbenes and thus can be used as a “solvent” in matrix carbene reactions presumably due to a large inert guest cavity provided by bulky tertiary alcohol which binds a molecular aggregate inside it. H atom tunneling in the matrix is also shown to compete with very efficient intramolecular migration of hydrogen to the carbenic center. Migration aptitude as well as stereochemistry are also found to be subject to the matrix effects.  相似文献   

6.
The reactions of CH(2), CHCl, and CCl(2) with cyclopropane, 1, have been examined computationally. In all cases the lowest energy reaction between the carbene and 1 is predicted to be C-H insertion. In the reaction of CH(2) with 1, the transition state for C-C insertion leading to cyclobutane is 1.7 kcal/mol higher in enthalpy than the transition state for C-H insertion at the G3B3 level. A pathway higher in energy than C-H insertion in the reactions of CHCl and CCl(2) with 1 involves two-bond cleavages generating ethylene along with chloro and dichloroethylene, respectively.  相似文献   

7.
We investigate palladium-induced activation of the C-H, C-C, C-F, and C-Cl bonds in methane, ethane, cyclopropane, fluoromethane, and chloromethane, using relativistic density functional theory (DFT) at ZORA-BLYP/TZ2P. Our purpose is to arrive at a qualitative understanding, based on accurate calculations, of the trends in activation barriers and transition state (TS) geometries (e.g. early or late along the reaction coordinate) in terms of the reactants' properties. To this end, we extend the activation strain model (in which the activation energy Delta E(not equal) is decomposed into the activation strain Delta E(not equal)(strain) of the reactants and the stabilizing TS interaction Delta E(not equal)(int) between the reactants) from a single-point analysis of the TS to an analysis along the reaction coordinate zeta, that is, Delta E(zeta)=Delta E(strain)(zeta)+Delta E(int)(zeta). This extension enables us to understand qualitatively, trends in the position of the TS along zeta and, therefore, the values of the activation strain Delta E(not equal)(strain)=Delta E(strain)(zeta(TS)) and TS interaction Delta E(not equal)(int)=Delta E(int)(zeta(TS)) and trends therein. An interesting insight that emerges is that the much higher barrier of metal-mediated C-C versus C-H activation originates from steric shielding of the C-C bond in ethane by C-H bonds. Thus, before a favorable stabilizing interaction with the C-C bond can occur, the C-H bonds must be bent away, which causes the metal-substrate interaction Delta E(int)(zeta) in C-C activation to lag behind. Such steric shielding is not present in the metal-mediated activation of the C-H bond, which is always accessible from the hydrogen side. Other phenomena that are addressed are anion assistance, competition between direct oxidative insertion (OxIn) versus the alternative S(N)2 pathway, and the effect of ring strain.  相似文献   

8.
The powerful methyl(trifluoromethyl)dioxirane (1b) was employed to achieve the direct oxyfunctionalization of 2,4-didehydroadamantane (5), spiro[cyclopropane-1,2'-adamantane] (9), spiro[2.5]octane (17), and bicyclo[6.1.0]nonane (19). The results are compared with those attained in the analogous oxidation of two alkylcyclopropanes, i.e., n-butylcyclopropane (11) and (3-methyl-butyl)-cyclopropane (14). The product distributions observed for 11 and 14 show that cyclopropyl activation of alpha-C-H bonds largely prevails when no tertiary C-H are present in the open chain in the tether; however, in the oxyfunctionalixation of 14 cyclopropyl activation competes only mildly with hydroxylation at the tertiary C-H. The application of dioxirane 1b to polycyclic alkanes possessing a sufficiently rigid framework (such as 5 and 9) demonstrates the relevance of relative orientation of the cyclopropane moiety with respect to the proximal C-H undergoing oxidation. At one extreme, as observed in the oxidation of rigid spiro compound 9, even bridgehead tertiary C-H's become deactivated by the proximal cyclopropyl moiety laying in the unfavorable "eclipsed" (perpendicular) orientation; at the other end, a cyclopropane moiety constrained in a favorable "bisected" orientation (as for didehydroadamantane 5) can activate an "alpha" methylene CH2 to compete effectively with dioxirane O-insertion into tertiary C-H bonds. Comparison with literature reports describing similar oxidations by dimethyldioxirane (1a) demonstrate that methyl(trifluoromethyl)dioxirane (1b) presents similar selectivity and remarkably superior reactivity.  相似文献   

9.
The competition between C-C and C-H insertion in model transition-metal reactions with cyclopropane and propene (C3H6) was studied as a function of total energy. Insertion of neutral transition metal atoms M (= Y, Zr, Nb, and Mo*) into the C-C bonds of cyclopropane led to formation of MCH2 + C2H4, whereas C-H insertion produced MC3H4 + H2. The measured product branching ratios verify the relative potential energy barrier heights for C-C and C-H insertion predicted by ab initio calculations.  相似文献   

10.
Pd-catalyzed oxidative C-H/C-H coupling reaction is an emerging type of C-H acti-vation reaction, which attracts great interests because both reaction partners do not re-quire pre-functionalization. In the present study, we employed DFT methods to investigatethe mechanism of Pd(OAc)2-catalyzed oxidative C-H/C-H coupling of pentafluoroben-zene with benzene. Four possible pathways were examined in the C-H activation part: path A benzene-pentafluorobenzene mechanism (C-H activation of benzene occurs before the C-H activation of pentafluorobenzene), path B pentafluorobenzene-benzene mechanism (C-H activation of benzene occurs after the C-H activation of pentafluorobenzene), path C benzene-pentafluorophenylsilver mechanism (C-H activation of benzene and subsequenttransmetalation with pentafluorophenyl silver complex), path D pentafluorophenylsilver-benzene mechanism (transmetalation with pentafluorophenyl silver complex and subsequent C-H activation of benzene). Based on the calculations, the sequences of two C-H activation steps are found to be different in the oxidative couplings of same substrates (i.e. pentaflu-orobenzene and benzene) in different catalytic systems, where the additive Ag salts played a determinant role. In the absence of Ag salts, the energetically favored pathway is path B (i.e. the C-H activation of pentafluorobenzene takes place before the C-H cleavage of benzene). In contrast, with the aid of Ag salts, the coordination of pentafluorophenylsilver to Pd center could occur easily with a subsequent C-H activation of benzene in the second step, and the second step significantly raises the whole reaction barrier. Alternatively, in thepresence of Ag salts, the kinetically preferred mechanism is path C (i.e. the C-H activation of benzene takes place in the first step followed by transmetalation with pentafluorophenyl-silver complex), which is similar to path A. The calculations are consistent with the H/D exchange experiment and kinetic isotope effects. Thus the present study not only offers a deeper understanding of oxidative C-H/C-H coupling reaction, but also provides helpful insights to further development of more efficient and selective oxidative C-H/C-H coupling reactions.  相似文献   

11.
He Z  Yudin AK 《Organic letters》2006,8(25):5829-5832
Palladium chloride-catalyzed intramolecular activation of electroneutral cyclopropane derivatives results in cleavage of the cyclopropane ring followed by formation of heterocyclic derivatives. Phenols, carboxylic acids, and amide groups were considered as substituents ortho to the cyclopropane ring in this catalytic activation chemistry. The regioselectivity observed in the case of amide-containing substrates was different from that of carboxylic acid-containing substrates, ruling out simple cyclopropane isomerization followed by a Wacker oxidation as the mechanistic pathway. [reaction: see text]  相似文献   

12.
Davies HM  Jin Q 《Organic letters》2005,7(12):2293-2296
[reaction: see text] Dirhodium tetrakis((S)-N-dodecylbenzenesulfonyl)prolinate) (Rh2(S-DOSP)4) catalyzed reaction of 1,2-dihydronaphthalenes with an excess of methyl vinyldiazoacetates results in a formal double C-H activation, generating four new stereogenic centers with very high stereoselectivity. The mechanism of the C-H activation is complex, involving a combined C-H activation/Cope rearrangement followed by a retro-Cope rearrangement.  相似文献   

13.
This communication describes the first observation and study of C-H activation at a Pd(IV) center. This transformation was achieved by designing model complexes in which the rate of reductive elimination is slowed relative to that of the desired C-H activation process. Remarkably, the C-H activation reaction can proceed under mild conditions and with complementary site selectivity to analogous transformations at Pd(II). These results provide a platform for incorporating this new reaction as a step in catalytic processes.  相似文献   

14.
YANG Jing 《结构化学》2014,(1):122-134
A theoretical investigation of the reaction mechanisms for C-H and C-C bond activation processes in the reaction of Ni with cycloalkanes C,,H2. (n = 3-7) is carried out. For the Ni + CnH2, (n = 3, 4) reactions, the major and minor reaction channels involve C-C and C-H bond activations, respectively, whereas Ni atom prefers the attacking of C-H bond over the C-C bond in CnH2n (n = 5=7). The results are in good agreement with the experimental study. In all cases, intermediates and transition states along the reaction paths of interest are characterized, It is found that both the C-H and C-C bond activation processes are proposed to proceed in a one-step manner via one transition state. The overall C-H and C-C bond activation processes are exothermic and involve low energy barriers, thus transition metal atom Ni is a good mediator for the activity of cycloalkanes CnH2n (n = 3 -7).  相似文献   

15.
Li F  Liu TX  Wang GW 《Organic letters》2012,14(8):2176-2179
Functionalization with the sulfonic acid group as the directing group in a C-H activation reaction has been revealed for the first time. [60]Fullerene has been employed in the unprecedented palladium-catalyzed C-H activation reaction of arylsulfonic acids to afford [60]fullerene-fused sultones.  相似文献   

16.
The photochemical C-H activation reactions of eta(3)-TpRh(CO)(2) (Tp = HB-Pz(3), Pz = 3,5-dimethylpyrazolyl) and CpRh(CO)(2) (Cp = C(5)H(5)) have been studied in a series of linear, cyclic, and aromatic hydrocarbon solvents on a femtosecond to microsecond time scale. These results have revealed that the structure of the hydrocarbon substrate affects the final C-H bond activation step, which is in accordance with the known preference of bond activation toward primary C-H sites. In the case of aromatic C-H activation, the reaction is divided into parallel channels involving sigma- and pi-solvated intermediates. Results for the analogous CpRh(CO)(2) molecule have shown that the coordination of the cyclopentadienyl ligand does not play a direct role in the dynamics of the reaction, in contrast to the C-H activation mechanism observed in eta(3)-TpRh(CO)(2) studies.  相似文献   

17.
A systematic theoretical study is carried out on the mechanism for Pd(II)-catalyzed oxidative cross-coupling between electron-deficient arenes and alkenes. Two types of reaction pathways involving either a sequence of initial arene C-H activation followed by alkene activation, or the reverse sequence of initial alkene C-H activation followed by arene activation are evaluated. Several types of C-H activation mechanisms are discussed including oxidative addition, σ-bond metathesis, concerted metalation/deprotonation, and Heck-type alkene insertion. It is proposed that the most favored reaction pathway should involve an initial concerted metalation/deprotonation step for arene C-H activation by (L)Pd(OAc)(2) (L denotes pyridine type ancillary ligand) to generate a (L)(HOAc)Pd(II)-aryl intermediate, followed by substitution of the ancillary pyridine ligand by alkene substrate and direct insertion of alkene double bond into Pd(II)-aryl bond. The rate- and regio-determining step of the catalytic cycle is concerted metalation/deprotonation of arene C-H bond featuring a six-membered ring transition state. Other mechanism alternatives possess much higher activation barriers, and thus are kinetically less competitive. Possible competing homocoupling pathways have also been shown to be kinetically unfavorable. On the basis of the proposed reaction pathway, the regioselectivity predicted for a number of monosubstituted benzenes is in excellent agreement with experimental observations, thus, lending further support for our proposed mechanism. Additionally, the origins of the regioselectivity of C-H bond activation is elucidated to be caused by a major steric repulsion effect of the ancillary pyridine type ligand with ligands on palladium center and a minor electronic effect of the preinstalled substituent on the benzene ring on the cleaving C-H bond. This would finally lead to the formation of a mixture of meta and para C-H activation products with meta products dominating while no ortho products were detected. Finally, the multiple roles of the ancillary pyridine type ligand have been discussed. These insights are valuable for our understanding and further development of more efficient and selective transition metal-catalyzed oxidative C-H/C-H coupling reactions.  相似文献   

18.
The atom-efficiency of one of the most widely used catalytic reactions for forging C-C bonds, the Tsuji-Trost reaction, is limited by the need of preoxidized reagents. This limitation can be overcome by utilization of the recently discovered palladium-catalyzed C-H activation, the allylic C-H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mechanistic proposals for the three reaction types comprising the overall transformation: C-H activation, nucleophilic addition, and re-oxidation of the active catalyst. Recent advances in C-H bond activation are highlighted with emphasis on those leading to C-C bond formation, but where it was deemed necessary for the general understanding of the process closely related C-H oxidations and aminations are also included. It is found that C-H cleavage is most likely achieved by ligand participation which could involve an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pK(a) of the nucleophile. This limitation could be due to the pH dependence of the benzoquinone/hydroquinone redox couple. Alternative methods for re-oxidation that does not rely on benzoquinone could be able to alleviate this limitation.  相似文献   

19.
Evidence is presented for a proposed mechanism of C-H activation of 3-methyl-3,4-dihydroquinazoline (1) by (PCy(3))(2)RhCl. One intermediate (3), a coordination complex of 1 with (PCy(3))(2)RhCl, was identified along the path to the Rh-N-heterocyclic carbene product of this reaction (2). Isotopic labeling and reaction-rate studies were used to demonstrate that C-H activation takes place intramolecularly on the reaction coordinate between 3 and 2. Computational studies corroborate the proposed mechanism and suggest that the rate-limiting step is oxidative addition of the C-H bond to the metal center. The consequences of this mechanism for coupling reactions of N-heterocycles that occur via Rh-catalyzed C-H bond activation are discussed.  相似文献   

20.
The reaction of [(dippe)NiH]2 with 2-methyl-3-butenenitrile (2M3BN) in solvents spanning a wide range of polarities shows significant differences in the ratio of C-H and C-CN activated products. C-H cleavage is favored in polar solvents, whereas C-C cleavage is favored in nonpolar solvents. This variation is attributed to the differential solvation of the transition states, which was further supported through the use of sterically bulky solvents and weakly coordinating solvents. Variation of the temperature of reaction of [(dippe)NiH]2 with 2M3BN in decane and N,N-dimethylformamide (DMF) allowed for the calculation of Eyring activation parameters for the C-CN activation and C-H activation mechanisms. The activation parameters for the C-H activation pathway were DeltaH(double dagger) = 11.4 +/- 5.3 kcal/mol and DeltaS(double dagger) = -45 +/- 15 e.u., compared with DeltaH(double dagger) = 17.3 +/- 2.6 kcal/mol and DeltaS(double dagger) = -29 +/- 7 e.u. for the C-CN activation pathway. These parameters indicate that C-H activation is favored enthalpically, but not entropically, over C-C activation, implying a more ordered transition state for the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号