首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to determine the limits of applicability of Craik's model, the results of calculations obtained in accordance with this model are compared with the conclusions of the more exact theory of secondary instability proposed by Herbert and the results of direct numerical simulation of laminar-turbulent transition. An analysis of the results obtained shows that Craik's model describes the development of perturbation adequately only up to the amplitudes of the order of 10–3 times the free-stream velocity.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 34–39, November–December, 1994.  相似文献   

2.
A numerical investigation in the approximation of boundary layer theory has been made of the development of the flow near the surface of a rotating plate in a two-dimensional flow with rectilinear streamlines perpendicular to the leading edge in a rotating coordinate system attached rigidly to the plate. In an earlier investigation [1] using the approximate method of integral relations, Kurosaka obtained and described quantitatively a transition from a Blasius boundary layer to an Eckmann boundary layer in the form of three-dimensional oscillations. The solution described in the present paper confirms the oscillatory nature of the development of the boundary layer, but the quantitative results differ strongly from Kurosaka's.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 154–157, May–June, 1982.  相似文献   

3.
The transition to turbulence in a boundary layer can be induced by perturbations of low intensity and is accompanied by a growth in their energy, the development of three-dimensional structures, and a change in the spectral composition of the field. A number of important properties of the process admit interpretation in the framework of nonlinear stability theory and can be due to a resonance interaction. Experiments [1, 2] have revealed a transition accompanied by an appreciable enhancement of pulsations whose period is twice that of the driving vibrating tape. Theoretical investigations [3–9] have revealed the existence of a resonance mechanism capable of strong excitation of three-dimensional Tollmien-Schlichting waves at the frequency of a subharmonic. It has been suggested [4] that the observed transition regime is the result of evolution of triplets of resonantly coupled oscillations forming symmetric triplets [10]. In contrast to the type of transition considered by Craik et al. [10, 11], the leading role is played by subharmonics distinguished parametrically in the background. Experimental confirmations have been obtained [12, 13] of the coupling of the resonances in symmetric triplets with the subharmonic regime. Further investigation of the resonance mechanism is an important topical problem. This paper presents a study on the formation and special characteristics of the initial stage in the nonlinear development of triplets; the collective interaction of a two-dimensional Tollmien-Schlichting wave with a packet of three-dimensional waves is examined; the behavior of the system is analyzed, taking into account the resonance coupling with the harmonic of the main wave. A comparison is made between Craik's model and experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 23–30, July–August, 1984.The auothors wish too express their gratitude to A. G. Volodin for useful discussions and V. Ya, Levchenko for his interest in the work.  相似文献   

4.
The authors consider problems connected with stability [1–3] and the nonlinear development of perturbations in a plane mixing layer [4–7]. Attention is principally given to the problem of the nonlinear interaction of two-dimensional and three-dimensional perturbations [6, 7], and also to developing the corresponding method of numerical analysis based on the application to problems in the theory of hydrodynamic stability of the Bubnov—Galerkin method [8–14].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza, No. 1, pp. 10–18, January–February, 1985.  相似文献   

5.
Capillary instability of a fluid jet is one of the classical problems of hydrodynamics [1]. Studying it is of practical interest, particularly for the optimization of the ignition of a liquid propellant and the development of granulating apparatus in the chemical industry [2]. Until recently, the main attention has been paid to analyzing linear problems. Dispersion equations have been obtained for small perturbations of a jet surface with the viscosity of the external medium taken into account [3]. The construction of a theory of finite-amplitude waves on an ideal fluid jet surface was started in [4, 5]. Up to now this theory has achieved substantial results, as can be assessed by the successful numerical modeling of the dissociation of an inviscid fluid jet into drops [6] (see [7, 8] also). This paper is devoted to a discussion of the nonlinear development stage of viscous fluid jet instability under conditions allowing the influence of the surrounding medium and the gravity field to be neglected.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 179–182, March–April, 1977.The author is grateful to B. M. Konyukhov and G. D. Kuvatov for suggesting this problem and performing the experiment and to M. I. Rabinovich for useful discussions.  相似文献   

6.
The one-dimensional model proposed by Taylor [1] of the dispersion of soluble matter describes approximately the distribution of the solute concentration averaged over the tube section in Poiseuille flow. Aris [2] obtained more accurately the effective diffusion coefficient in Taylor's model and solved the problem for the general case of steady flow in a channel of arbitrary section. Many papers have been published in the meanwhile devoted to particular applications of this theory (for example, [3–5]). Various dispersion models have been constructed [6–8] that make the Taylor—Aris model more accurate at small times and agree with it at large times. The acceleration of the mixing of the solute considered in these models in the presence of the simultaneous influence of molecular diffusion and convective transport also operates in unsteady flows. In particular, the presence of velocity pulsations influences the growth of the dispersion even if the mean flow velocity is equal to zero at every point of the flow. In the present paper, the Taylor—Aris theory is extended to the case of laminar flows with periodically varying flow velocity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 24–30, September–October, 1982.  相似文献   

7.
A linear theory of stability of a plane-parallel convective flow between infinite isothermal planes heated to different temperature was developed in [1–6]. At moderate Pr values the instability is monotonic and leads to the development of steady secondary motions. These motions for the case of a vertical layer have been investigated by the net [7, 8] and small-parameter [9] methods. In this paper steady secondary motions in an inclined layer are investigated. The small-parameter and net methods are used. The hard nature of excitation of secondary motions in a defined range of tilt angles is established. There are two types of secondary motions, whose regions of existence overlap — vortices at the boundary of countercurrent streams and convection rolls; the hard instability is due to the development of convection rolls. The analog of the Squire transformation obtained in [4] for infinitely small disturbances of a plane-parallel convective flow is extended to secondary motions of finite amplitude.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 3–9, May–June, 1977.I thank G. Z. Gershumi, E. M. Zhukhovitskii, and E. L. Tarunin for interest in the work and valuable discussion.  相似文献   

8.
Experimental and industrial observations indicate a strong nonlinear dependence of the parameters of the flow processes in a fractured reservoir on its state of stress. Two problems with change of boundary condition at the well — pressure recovery and transition from constant flow to fixed bottom pressure — are analyzed for such a reservoir. The latter problem may be formulated, for example, so as not to permit closure of the fractures in the bottom zone. For comparison, the cases of linear [1] and nonlinear [2] fractured porous media and a fractured medium [3] are considered, and solutions are obtained in a unified manner using the integral method described in [1]. Nonlinear elastic flow regimes were previously considered in [3–6], where the pressure recovery process was investigated in the linearized formulation. Problems involving a change of well operating regime were examined for a porous reservoir in [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–73, May–June, 1991.  相似文献   

9.
A study is made of the transition from regular reflection to Mach reflection when a plane moderately strong or weak shock wave interacts with a wall in a two-phase gas—liquid medium. An equilibrium model that differs from the model of Parkin et al. [1] by the introduction of the adiabatic velocity of sound is used to investigate shock wave reflection in the complete range of gas concentrations. For the reflection of weak shock waves, nonlinear asymptotic expansions [2] are used. In the limiting cases, the results agree with those already known for single-phase media [2, 3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 190–192, September–October, 1983.  相似文献   

10.
Galkin  V. S.  Kogan  M. N.  Makashev  N. K. 《Fluid Dynamics》1984,19(3):449-458
The present paper is made necessary by the publication of the foregoing paper in this issue by Kolesnichenko [1]. It considers the basic propositions of the generalized Chapman-Enskog method and analyzes the arguments put forward by Kolesnichenko [1] and the validity of the method. The position of the results obtained by Kolesnichenko [14–17] is indicated. Nonequilibrium flows of multiatomic gases in which there occur processes of exchange of internal energy of the molecules in collisions between them and chemical reactions (such processes are called inelastic) are encountered frequently in nature and technology. It is therefore naturally of interest to derive gas-dynamic equations for such flows. The methods of the kinetic theory of gases were first used to obtain equations describing the limiting cases of very fast inelastic processes that take place in times of the order of the molecule-molecule collision times (equilibrium case) and very slow inelastic processes that take place over times of the order of the characteristic flow time (relaxation case). In [2–5], an algorithm was proposed for deriving gas-dynamic equations valid for arbitrary ratios of the rates of the elastic and inelastic processes and reducing to the well-known equations for the limiting cases already mentioned. The algorithm is called the generalized Chapman-Enskog method (abbreviated to the generalized method). The development, modification, and analysis of its properties can be found in [4, 6–13]. In [1], Kolesnichenko has questioned the validity of this algorithm.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 126–136, May–June, 1984.We thank V. A. Rykov for helpful and constructive discussions of the work.  相似文献   

11.
The results of Raizer [1], Hays [2], and Chernous'ko [3] are generalized to-the case of self-similar propagation of shock waves in a gas with exponentially varying density and constant pressure. A solution is found by the method of successive approximations. The zero-order approximation coincides with the Whitham method [4]. The first-order approximation is in good agreement with numerical calculations in [2]. The non-selfsimilar motion of a weak shock wave is investigated in the framework of linear theory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 48–54, November–December, 1970.  相似文献   

12.
It is well known that sound absorption in finite media is caused mainly by fluid viscosity and thermal conductivity. Kirchhoff [1] developed a general theory describing the mechanism of such absorption and applied it to the particular case of sound propagating in tubes. Rayleigh [2] used Kirchhoff's theory to study sound absorption by a porous wall with normal incidence of the sound wave. Konstantinov [3] also used Kirchhoff's theory to solve the problem of sound absorption by a rigid, isothermal (with infinite thermal conductivity) and a thermally insulating plane wall with arbitrary angle of sound-wave incidence. A natural extension of these efforts is a study of sound absorption on the boundary dividing two liquids. Aside from its scientific interest, such a problem is of practical significance, for example, in hydroacoustics or in creating methods for visualization of sound in gases and liquids [4]. The present study will attempt to solve this problem. The results can be applied to both liquid and solid (resinlike) materials.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 6–9, January–February, 1984.The author thanks T. P. Zhizhina for much assistance in the study.  相似文献   

13.
The transition flow is considered of a fibrous suspension in a pipe. The flow region consists of two subregions: at the center of the flow a plug formed by interwoven fibers and fluid moves as a rigid body; between the solid wall and the plug is a boundary layer in which the suspension is a mixture of the liquid phase and fibers separated from the plug [1–3]. In the boundary region the suspension is simulated as an anisotropic Ericksen—Leslie fluid [4, 5] which satisfies certain additional conditions. Equations are obtained for the velocity profile and drag coefficient of the pipe, which are both qualitatively and quantitatively in good agreement with the experimental results [6–8]. Within the framework of the model, a mechanism is found for reducing the drag in the flow of a fibrous suspension as compared to the drag of its liquid phase.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 91–98, September–October, 1985.  相似文献   

14.
All the available data indicate that transition to turbulence in a circular pipe takes place within the initial section. This is confirmed by the conclusions of the linear theory of hydrodynamic stability, according to which the velocity profiles on the initial section of the pipe are unstable [1]. So far, however, there have been few investigations of initial-section flow at different values of the initial perturbation level 0 at the pipe inlet and different values of the length to diameter ratio of the pipe 2/d. We have now investigated the transition to turbulence in the boundary layer on the initial section of a circular pipe for various ratios of the thickness of the layer to the radius of the pipe and various levels of initial turbulence. The transition point in the boundary layer was found experimentally, since at present there are no reliable methods of calculating it. In particular, the susceptibility problem has not been solved, i.e., the problem of the initial amplitude of the Tollmien—Schlichting wave, the development of which results in transition to turbulence. It may be assumed that the initial amplitude of this wave is determined by the interaction of higher-frequency waves on the section preceding its growth zone [2]. Moreover, different views are held concerning the mechanism of transition to turbulence at 0 > 0.5%. At the same time, the results of the transition calculations for 0 > 0.5% based on the three-parameter turbulence model [3] require experimental verification.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 52–56, July–August, 1985.  相似文献   

15.
The convective combustion of porous gunpowder and high explosives is an intermediate stage in the transition from layered combustion to detonation [1, 2]. The theory of convective combustion of such systems is developed in [3–6]. It has now become necessary to analyze the possibility of convective combustion of aerosuspensions. The present paper develops the theory of the combustion of such systems on the basis of an analysis of the equations of gas dynamics with distributed supply of mass and heat; the problem of nonstationary motion of a convective combustion front is formulated. In the homobaric approximation [7], when the pressure is assumed to be spatially homogeneous, an analytic solution to the problem is found; this determines the law of motion of the front and the distribution of the parameters that characterize the gas and the particles in the combustion zone. Necessary conditions for the transition from convective combustion to explosion are obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 49–56, September–October, 1980.I thank R. I. Nigmatulin for helpful comments and advice, and also V. A. Pyzh and V. K. Khudyakov for discussing the work.  相似文献   

16.
Recently, the theory of nonequilibrium systems simulated by a set of anharmonic oscillators has received significant development. The investigation of such kinds of systems is especially important in the study of problems associated with the stimulation of chemical reactions and the development of effective molecular lasers. The systematic analysis of the kinetics of anharmonic oscillators assumes the simultaneous solution of a large number of nonlinear equations describing the population balance of the vibrational levels. Realization of this approach is associated with cumbersome numerical calculations and does not permit obtaining a qualitative picture of the behavior of the system as a function of the different parameters (pressure, temperature, etc.). An approximate analytical theory has been formulated in [1, 2] which permits finding the distribution function over the vibrational states with the effects of anharmonicity taken into account. We will employ the approach developed in these papers to describe a system of anharmonic oscillators under conditions of powerful optical pumping. This problem was discussed in [3], where it was found that such a system changes into a saturation mode in the case of high pumping levels. The existence of this mode is explained by the fact that the maximum rate of energy input into a vibrational degree of freedom is determined by the rate of distribution of this energy over all the vibrational levels, i.e., by the constant of V—V-exchange. For sufficiently large pumpings the approximation of the Boltzmann distribution function adopted in [3] in connection with the calculation of the saturation parameters is too crude. The goal of this paper is to derive in explicit form expressions for the vibrational energy supply, the absorbed power, and so on, under saturation conditions without the use of the approximation indicated above [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 10–15, September–October, 1978.  相似文献   

17.
The calculation of supersonic flow past three-dimensional bodies and wings presents an extremely complicated problem, whose solution is made still more difficult in the case of a search for optimum aerodynamic shapes. These difficulties made it necessary to simplify the variational problems and to use the simplest dependences, such as, for example, the Newton formula [1–3]. But even in such a formulation it is only possible to obtain an analytic solution if there are stringent constraints on the thickness of the body, and this reduces the three-dimensional problem for the shape of a wing to a two-dimensional problem for the shape of a longitudinal profile. The use of more complicated flow models requires the restriction of the class of considered configurations. In particular, paper [4] shows that at hypersonic flight velocities a wing whose windward surface is concave can have the maximum lift-drag ratio. The problem of a V-shaped wing of maximum lift-drag ratio is also of interest in the supersonic velocity range, where the results of the linear theory of [5] or the approximate dependences of the type of [6] can be used.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 128–133, May–June, 1986.We note in conclusion that this analysis is valid for those flow regimes for which there are no internal shock waves in the shock layer near the windward side of the wing.  相似文献   

18.
Independent variables are widely used in boundary-layer theory to construct efficient methods of solving problems. The Dorodnitsyn variables in Lees' form [1] are the most common and general. This form combines the transformations proposed by Dorodnitsyn [2], Blasius [3], and Mangler-Stepanov [4, 5]. As is well known, transformation of the boundary-layer equations to Dorodnitsyn variables in Lees' form leads to a generalized single system of equations describing plane and axisymmetric gas flows. An analogous generalization of the Mises [6] and Crocco [7] variables is carried out below.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 166–168, September–October, 1976.  相似文献   

19.
In this article the author discusses the results of a numerical investigtion of peristaltic flow at finite Reynolds numbers and finite wave numbers and amplitudes of the traveling wave at the channel walls. The limits of applicability of the data of the asymptotic analysis carried out [6] by means of separate expansions in powers of the Reynolds number and the wave number are determined. It is shown that with increase in the Reynolds number the possibility of transition, under certain conditions, to the flow structure corresponding to nonaxial trapping is preserved.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 11–15, May–June, 1985.The author wishes to thank E. M. Zhukhovitskii for his interest in the work.  相似文献   

20.
The papers [1–5] are devoted to an investigation of aspects of the hydrodynamic interaction of cascades of profiles in a nonlinear formulation: it is shown experimentally in [1] and theoretically in [2] that the free vortex sheet ruptures upon meeting a profile; taking account of the evolution of vortex wakes, the flows around two cascades of solid profiles of infinitesimal [3] and finite [4] density are computed; results of an experimental investigation of the dynamic reactions of the flow on two mutually moving cascades of thin profiles are presented in [5]. The interference between two cascades of thin profiles in an inviscid, incompressible fluid flow is examined in this paper, where a modified method from [6] is used.Translated from Zhurnal Prikladnoi MekhaniM i Tekhnicheskoi Fiziki, No. 4, pp. 61–65, July–August, 1976.The author is grateful to D. H. Gorelov for discussing the research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号