首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analysis of trace levels of carbohydrate monomers in complex matrices requires excellent discrimination of the peaks of interest from background noise. Minimizing contaminating peaks introduced during sample preparation and chromatography is extremely important. However, the exquisite selectivity of the mass spectrometer is essential as a chromatographic detector in this regard. Traditionally gas chromatography-mass spectrometry (GC-MS) has been the method of choice for trace analysis of derivatized carbohydrates. Recent improvements in commercial tandem mass spectrometers (MS-MS) are encouraging the use of GC-MS-MS for improved specificity in trace analysis. There has also been an explosion in applications of electrospray ionization (ESI) for sensitive introduction of polar molecules (including sugars) into the mass spectrometer. This has encouraged ongoing developments in high-performance liquid chromatography-mass spectrometry (LC-MS) and MS-MS of underivatized carbohydrates. This has the potential to dramatically simplify sample preparation. However, as yet LC-MS and MS-MS do not match the sensitivity of GC-MS or GC-MS-MS. Developments in analysis of sugar monomers from complex matrices using chromatography (GC/LC) in conjunction with mass spectrometry (MS, MS-MS) or stand-alone MS-MS are discussed.  相似文献   

2.
Pulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity. The combinations of PFM GC x GC-MS with SMB and PFM GC x GC-MS-MS with SMB were explored with the analysis of diazinon and permethrin in coriander. PFM GC x GC-MS with SMB is characterized by enhanced molecular ion and tailing-free fast ion source response time. It enables universal pesticide analysis with full scan and data analysis with reconstructed single ion monitoring on the enhanced molecular ion and another prominent high mass fragment ion. The elimination of the third fragment ion used in standard three ions method results in significantly reduced matrix interference. GC x GC-MS with SMB improves the GC separation, and thereby our ability for sample identification using libraries. GC-MS-MS with SMB provides better reduction (elimination) of matrix interference than GC x GC-MS. However, it is a target method, which is not always applicable. GC x GC-MS-MS does not seem to further reduce matrix interferences over GC-MS-MS and unlike GC x GC-MS, it is incompatible with library identification, but it is beneficial to have both GC x GC and MS-MS capabilities in the same system.  相似文献   

3.
Bacterial cellular polysaccharides are composed of a variety of sugar monomers. These sugars serve as chemical markers to identify specific species or genera or to determine their physiological status. Some of these markers can also be used for trace detection of bacteria or their constituents in complex clinical or environmental matrices. Analyses are performed, in our hands, employing hydrolysis followed by the alditol acetate derivatization procedure. Substantial improvements have been made to sample preparation including simplification and computer-controlled automation. For characterization of whole cell bacterial hydrolysates, sugars are analyzed by gas chromatography-mass spectrometry (GC-MS). Simple chromatograms are generated using selected ion monitoring (SIM). Using total ion GC-MS, sugars can be readily identified. In more complex clinical and environmental samples, markers for bacteria are present at sufficiently low concentrations that more advanced instrumentation, gas chromatography-tandem mass spectrometry (GC-MS-MS), is preferred for optimal analysis. Using multiple reaction monitoring, MS-MS is used (replacing more conventional SIM) to ignore extraneous chromatographic peaks. Triple quadrupole and ion trap GC-MS-MS instruments have both been used successfully. Absolute chemical identification of sugar markers at trace levels is achieved, using MS-MS, by the product spectrum.  相似文献   

4.
Muramic acid (Mur) is present in the cell wall of Eubacteria and serves as a chemical marker for the trace detection of bacteria and bacterial cell wall debris in complex matrices. There have been numerous studies using a variety of derivatives of Mur, particularly in combination with gas chromatography-tandem mass spectrometry (GC-MS-MS) where the detection limit has been steadily lowered. A stable, halogenated derivative, the pentafluorobenzyl oxime (PFBO) acetate of Mur, has been developed by others and successfully used for GC with electron-capture detection. The current report is the first use of this derivative for GC-MS-MS analysis of Mur, or indeed any other carbohydrate, using negative ion chemical ionization (NICI) with GC-MS-MS. Mur was readily detected in settled surface dust (166 ng/mg), as well as dust collected from indoor air (1.4-5.9 ng/mg). Analyses of Mur as a PFBO acetate by GC-NICI-MS-MS or as alditol acetates by electron impact GC-electron impact ionization MS-MS serve as complementary approaches for trace detection in complex matrices.  相似文献   

5.
A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of fast GC and fast GC-MS and the various trade-offs involved in having powerful and practical fast GC-MS.  相似文献   

6.
Analytical methods that are used for the detection and identification of chemicals related to the Chemical Weapons Convention in complex organic solutions were developed. A matrix modified by the addition of complex diesel oil background compounds and interferences was used for the development of a gas chromatography-mass spectrometry or gas chromatography-tandem mass spectrometry (GC-MS or GC-MS/MS) method for unambiguous identification of the scheduled chemicals. Co-elution of diethyl N,N-dimethylphosphoramidate and ethyl N,N-dimethylphosphoramidocyanidate, which are not separated by GC, was identified by GC-MS. Although GC-MS can identify the compounds, GC-MS/MS identification has greater accuracy and sensitivity in the case of complex matrixes. Four scheduled chemicals were accurately and selectively identified against numerous interfering substances by GC-MS/MS. The fragmentation chemistry of these compounds using MS/MS analysis was investigated.  相似文献   

7.
Gas chromatography (GC) with electron-capture detection (ECD), mass spectrometry (MS) and tandem mass spectrometry (MS-MS) were employed for the identification of 12 pesticides in water samples. For this purpose, a solid-phase extraction procedure with C18 cartridges was used, optimising the breakthrough volume and the saturation concentration. In GC-MS-MS, the lowest detectable concentrations for the pesticides were between 2 and 26 ng l(-1), recoveries ranged from 70 to 133% in water samples spiked at 100 ng l(-1) and the relative standard deviations were in the range 5.3 to 17.4%. The proposed analytical methodology was applied to analyse pesticides in wetland samples from Almería (Spain).  相似文献   

8.
The gas chromatography mass spectrometry (GC–MS) deconvolution reporting software (DRS) from Agilent Technologies has been evaluated for its ability as a screening tool to detect a large number of pesticides in incurred and fortified samples extracted with acetone/dichloromethane/light petroleum (Mini-Luke method). The detection of pesticides is based on fixed retention times using retention time locking (RTL) and full scan mass spectral comparison with a partly customer built automated mass spectral deconvolution and identification system (AMDIS) database. The GC–MS was equipped with a programmable temperature vaporising (PTV) injector system which enables more sample to be injected. In a blind study of 52 real samples a total number of 158 incurred pesticides were found. In addition to the 85 pesticides found by manual interpretation of GC–NPD/ECD chromatograms, the DRS revealed 73 more pesticides (+46%). The DRS system also shows its potential to discover pesticides which are normally not searched for (EPN in long beans from Thailand). A spiking experiment was performed to blank matrices of apple, orange and lettuce with 177 different pesticides at concentration levels 0.02 and 0.1 mg/kg. The samples were analysed on GC–MS full scan and the AMDIS match factor was used as a mass spectral quality criterion. The threshold level of the AMDIS match factor was set at 20 to eliminate most of the false positives. AMDIS match factors from 20 up to 69 are regarded only as indication of a positive hit and must be followed by manual interpretation. Pesticides giving AMDIS match factors at ≥70 are regarded as identified. To simplify and decrease the large amount of data generated at each concentration level, the AMDIS match factors ≥20 was averaged (mean AMF) for each pesticide including the commodities and their replicates. Among 177 different pesticides spiked at 0.02 and 0.1 mg/kg level, the percentage of mean AMF values ≥70 were 23% and 80%, respectively. For 531 individual detections of pesticides (177 pesticides × 3 replicates) giving AMDIS match factor 20 in apple, orange and lettuce, the detection rates at 0.02 mg/kg were 71%, 63% and 72%, respectively. For the 0.1 mg/kg level the detection rates were 89%, 85% and 89%, respectively. In real samples some manual interpretation must be performed in addition. However, screening by GC–MS/DRS is about 5–10 times faster compared to screening with GC–NPD/ECD because the time used for manual interpretation is much shorter and there is no need for re-injection on GC–MS for the identification of suspect peaks found on GC–NPD/ECD.  相似文献   

9.
Here we present a simple yet effective gas chromatography-mass spectrometry (GC-MS) identification approach for the detection of heteroatom-containing compounds (HACCs) in petroleum fractions. The MS/AMDIS (Automated Mass Spectral Deconvolution and Identification System) program was used to identify parts per million (ppm) HACC concentrations in petroleum fractions in place of traditional techniques (extraction and standard injection). Polycyclic aromatic sulfur heterocycles (S-PAHs) were used as model compounds to confirm the validity of the AMDIS identifiers, which were compared with extracted results using the off-line X-calibur software. AMDIS was able to identify ppm concentrations of S-PAHs in oil condensate. There was good agreement between experimental and AMDIS identification results for S-PAHs in oil condensate. AMDIS was also used to detect nitrogen-containing compounds (NCCs) and alkylphenols in oil condensate. Our results confirmed the presence of 2-methylbenzothiazole, carbazole, and 2,4-ditertbutyl phenol. In a crude oil sample, AMDIS identification of m/z=191 biomarkers was consistent with empirical results. Therefore, AMDIS can help to reduce the number of experimental steps in identification protocols.  相似文献   

10.
The National Institute of Standards and Technology (NIST) Automated Mass Spectral Deconvolution and Identification System (AMDIS) is applied to a selection of data files obtained from the gas chromatography/mass spectrometry (GC/MS) analysis of urinary organic acids. Mass spectra obtained after deconvolution are compared with a special user library containing both the mass spectra and retention indices of ethoxime-trimethylsilyl (EO-TMS) derivatives of a set of organic acids. Efficient identification of components is achieved and the potential of the procedure for automated diagnosis of inborn errors of metabolism and for related research is demonstrated.  相似文献   

11.
A new approach of flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry (GC x GC-MS) with supersonic molecular beam (SMB) and a quadrupole mass analyzer is presented. Flow modulation uniquely enables GC x GC-MS to be achieved even with the limited scan speed of quadrupole MS, and its 20 ml/min column flow rate is handled, splitless, by the SMB interface. Flow modulation GC x GC-SMB-MS shares all the major benefits of GC x GC and combines them with GC-MS including: (a) increased GC separation capability; (b) improved sensitivity via narrower GC peaks; (c) improved sensitivity through reduced matrix interference and chemical noise; (d) polarity and functional group sample information via the order of elution from the second polar column. In addition, GC x GC-SMB-MS is uniquely characterized by the features of GC-MS with SMB of enhanced and trustworthy molecular ion plus isotope abundance analysis (IAA) for improved sample identification and fast fly-through ion source response time. The combination of flow modulation GC x GC with GC-MS with SMB (supersonic GC-MS) was explored with complex matrices such as diesel fuel analysis and pesticide analysis in agricultural products.  相似文献   

12.
Herbal formulations are complex natural mixtures. Researchers usually tend to focus more on analysis of nonvolatile components but pay less attention to volatile compounds. In this study, an analytical strategy combining two approaches was established for comprehensive analysis of herbal formulations. Guizhi Fuling capsule (GFC), a drug approved by the FDA to enter phase II clinical trial for treatment of primary dysmenorrhea, was taken as a case for analysis. Gas chromatography–mass spectrometry (GC‐MS) with automated mass spectral deconvolution and identification system (AMDIS) led to rapid identification of 48 volatile components including four acetophenones, three fatty acid esters, 13 phenylpropanoids and 19 sesquiterpenes. Most of them were found from Guizhi. The volatile oils of Guizhi have been proved to exhibit many pharmacological activities. This is helpful in understanding the pharmacological mechanism of GFC. Furthermore, AMDIS turned out to be efficient and reliable for analysis of complex herbal formulations. Rapid‐resolution liquid chromatography (RRLC) coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (ESI‐Q‐TOF MS/MS) allowed the identification of 70 nonvolatile components including six acetophenones, 12 galloyl glucoses, 31 monoterpene glycosides, three phenols and 12 triterpene acids. Fragmentation behaviors of assigned components, especially triterpene acids, which are hard to identify by low‐resolution MS, were first investigated by TOF MS/MS. Characteristic ions and typical loss of assigned triterpene acids were summarized. Combinatorial use of GC‐MS‐AMDIS and RRLC‐ESI‐Q‐TOF MS/MS could be of great help in global qualitative analysis of GFC, as well as other herbal products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A method is described for fast dual-column separation of pesticides by use of dual low thermal mass gas chromatography–mass spectrometry (dual LTM-GC–MS) with different temperature programming. The method can provide two total ion chromatograms with different separation on DB-5 and DB-17 in a single run, which allows improved identification capability, even with short analysis time (<17 min). Also simultaneous detection with MS and elemental selective detector, e.g. pulsed flame photometric detection (PFPD) was evaluated for fast dual-column separation of 82 pesticide mixtures including 27 phosphorus pesticides. Dual LTM-GC–MS/PFPD was applied to analysis of pesticides in a brewed green tea sample with dual stir bar sorptive extraction method (dual SBSE).  相似文献   

14.
The effects of overlapping levels and concentration ratios of overlapping components, and of scan rates of the mass spectrometer, on the capability of the automated mass spectral deconvolution and identification system (AMDIS) in pesticide residue analysis were studied. To investigate the capability of AMDIS in removing interferences from the overlapping peaks, this system was applied to data files obtained from the gas chromatography/mass spectrometry (GC/MS) analysis of two overlapping (co-eluting) pesticides (beta-HCH and PCNB) in full scan mode. Differences in overlap levels, the concentration ratios of the two overlapping components and the scan rates of the instrument were studied. When the difference in scan number of overlapping compounds was equal to 1 scan, AMDIS incompletely extracted 'purified' mass spectra but as the difference increased to 3 or more scans, complete correct spectra could be extracted. The results also show that when the scan rate was in the range of 0.4-0.90 s/scan and the concentration ratios of the target compound/interference were above 1/5, there were ideal deconvolution results for this approach. To further study the application of AMDIS to pesticide residue analysis, AMDIS was applied to the identification of pesticides spiked in real samples (cabbage and rice). Typical pesticides being evaluated were identified using AMDIS at concentrations >50 ng/g in the extracts.  相似文献   

15.
We successfully detected halogenated compounds from several kinds of environmental samples by using a comprehensive two-dimensional gas chromatograph coupled with a tandem mass spectrometer (GC×GC-MS/MS). For the global detection of organohalogens, fly ash sample extracts were directly measured without any cleanup process. The global and selective detection of halogenated compounds was achieved by neutral loss scans of chlorine, bromine and/or fluorine using an MS/MS. It was also possible to search for and identify compounds using two-dimensional mass chromatograms and mass profiles obtained from measurements of the same sample with a GC×GC-high resolution time-of-flight mass spectrometer (HRTofMS) under the same conditions as those used for the GC×GC-MS/MS. In this study, novel software tools were also developed to help find target (halogenated) compounds in the data provided by a GC×GC-HRTofMS. As a result, many dioxin and polychlorinated biphenyl congeners and many other halogenated compounds were found in fly ash extract and sediment samples. By extracting the desired information, which concerned organohalogens in this study, from huge quantities of data with the GC×GC-HRTofMS, we reveal the possibility of realizing the total global detection of compounds with one GC measurement of a sample without any pre-treatment.  相似文献   

16.
Research on the chemical composition of fossil resins has evolved during the last decades as a multidisciplinary field and is strongly oriented toward the correlation with their geological and botanical origin. Various extraction procedures and chromatographic techniques have been used together for identifying the volatile compounds contained in the fossil resin matrix. Hyphenation between thermal desorption (TD), gas chromatography (GC) and mass spectrometry detection (MS) has been chosen to investigate the volatile compounds fraction from ambers with a focus on Romanite (Romanian amber) and Baltic amber species. A data analysis procedure was developed for the main purpose of fingerprinting ambers based on the MS identity of the peaks generated by the volatile fraction, together with their relative percentual area within the chromatogram. Chromatographic data analysis was based entirely on Automated Mass Spectral Deconvolution & Identification System (AMDIS) software to produce deconvoluted mass spectra which were used to build-up a mixed mass spectra and relative retention scale library. Multivariate data analysis was further applied on AMDIS results with successful discrimination between Romanite and Baltic ambers. A special trial was conducted to generate pyrolysis “like” macromolecular structure breakdown to volatile compounds by gamma irradiation with a high absorbed dose of 500 kGy. Contrary to our expectations the volatile fraction fingerprints were not modified after irradiation experiments. A complementary non-destructive new approach by ESR spectroscopy was also proposed for discriminating between Romanite and Baltic ambers.  相似文献   

17.
Ionic liquid stationary phases were tested for one dimensional gas chromatography-mass spectrometry (GC-MS) and comprehensive two dimensional gas chromatography (GC×GC) of fatty acid methyl esters from algae. In comparison with polyethylene glycol and cyanopropyl substituted polar stationary phases, ionic liquid stationary phases SLB-IL 82 and SLB-IL 100 showed comparable resolution, but lower column bleeding with MS detection, resulting in better sensitivity. The selectivity and polarity of the ionic liquid phases are similar to a highly polar biscyanopropyl-silicone phase (e.g. HP-88). In GC×GC, using an apolar polydimethyl siloxane×polar ionic liquid column combination, an excellent group-type separation of fatty acids with different carbon numbers and number of unsaturations was obtained, providing information that is complementary to GC-MS identification.  相似文献   

18.
The identification of organic compounds by GC/MS is useful in various areas such as fuel, indoor and outdoor air and flavour and fragrance applications. Multi-compound mixtures often contain isomeric compounds which have similar mass spectra and sometimes cannot be unambiguously identified by library search alone. Retention indices can help with confirmation of identification if they are reproducible. Using perdeuterated n-alkanes as a reference series for calculation of retention indices in GC/MS has a clear benefit because of the distinctive ion trace of m/z 34. Thermal desorption is useful for analysis of volatile organic compounds (VOCs) in air after sampling on appropriate sorbent cartridges. Comparison of indices between three systems, consisting of a thermal desorption unit, a gas chromatograph and a mass spectrometer, showed good agreement for compounds with well-defined peaks, whereas retention times varied.  相似文献   

19.
The use of gas chromatography (GC)-mass spectrometry (MS), GC-time-of-flight MS (TOFMS), comprehensive two-dimensional GC (GCxGC)-flame ionization detection (FID), and GCxGC-TOFMS is discussed for the characterization of the eight important representative components, including Z-alpha-santalol, epi-alpha-bisabolol, Z-alpha-trans-bergamotol, epi-beta-santalol, Z-beta-santalol, E,E-farnesol, Z-nuciferol, and Z-lanceol, in the oil of west Australian sandalwood (Santalum spicatum). Single-column GC-MS lacks the resolving power to separate all of the listed components as pure peaks and allow precise analytical measurement of individual component abundances. With enhanced peak resolution capabilities in GCxGC, these components are sufficiently well resolved to be quantitated using flame ionization detection, following initial characterization of components by using GCxGC-TOFMS.  相似文献   

20.
Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号