首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biglycan (BGN), a small leucine-rich repeat proteoglycan, is involved in a variety of pathological processes including malignant transformation, for which the upregulation of BGN was found related to cancer cell invasiveness. Because the functions of BGN are mediated by its chondroitin/dermatan sulfate (CS/DS) chains through the sulfates, the determination of CS/DS structure and sulfation pattern is of major importance. In this study, we have implemented an advanced glycomics method based on ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS) to characterize the CS disaccharide domains in BGN. The high separation efficiency and sensitivity of this technique allowed the discrimination of five distinct CS disaccharide motifs, of which four irregulated in their sulfation pattern. For the first time, trisulfated unsaturated and bisulfated saturated disaccharides were found in BGN, the latter species documenting the non-reducing end of the chains. The structural investigation by IMS MS/MS disclosed that in one or both of the CS/DS chains, the non-reducing end is 3-O-sulfated GlcA in a rather rare bisulfated motif having the structure 3-O-sulfated GlcA-4-O-sulfated GalNAc. Considering the role played by BGN in cancer cell spreading, the influence on this process of the newly identified sequences will be investigated in the future.  相似文献   

2.
A highly sensitive high-performance liquid chromatographic method with fluorometric postcolumn labeling using 2-cyanoacetamide was developed for the profile analysis of chondroitin sulfates (ChS) in normal human urine and serum. Over-sulfated disaccharide units such as di- or trisulfated unsaturated disaccharides in urine were estimated and unsaturated 6-sulfated disaccharide (delta Di-6S) was found as a major component from ChS in urine, although only small amounts of delta Di-6S from ChS were present in serum.  相似文献   

3.
An improved high-performance liquid chromatographic (HPLC) method for unsaturated disaccharides prepared from hyaluronic acid and various chondroitin sulphate and dermatan sulphate isomers was developed, which involves an ion-exchange resin prepared from a sulphonated styrene-divinylbenzene copolymer. The retention times of the individual unsaturated disaccharides were unique and reproducible, the disaccharides appearing in the following order: unsaturated non-sulphated disaccharide derived from hyaluronic acid, then unsaturated 6-sulphated, non-sulphated and 4-sulphated disaccharides from chondroitin sulphate isomers. Unsaturated disulphated disaccharide G had a much shorter retention time than the unsaturated non-sulphated disaccharide derived from hyaluronic acid. The contents of these individual unsaturated disaccharides could be determined with similar sensitivities on the basis of their ultraviolet absorbance. Selective and unique retention times and good resolutions were found for various unsaturated disulphated and trisulphated disaccharides. The proposed method can be used to determine various chondroitin sulphate and dermatan sulphate isomers in addition to hyaluronic acid in amounts as small as 100 ng to 8 micrograms. The practicality of this method was verified by its application to the separation and determination of the different types of chondroitin sulphate and dermatan sulphate isomers derived from human arteries in the presence of appreciable amounts of hyaluronic acid.  相似文献   

4.

Background

Previously, we have reported the presence of highly sulfated dermatans in solitary ascidians from the orders Phlebobranchia (Phallusia nigra) and Stolidobranchia (Halocynthia pyriformis and Styela plicata). Despite the identical disaccharide backbone, consisting of [→4IdoA(2S)β-1→3GalNAcβ-1→], those polymers differ in the position of sulfation on the N-Acetyl galactosamine, which can occur at carbon 4 or 6. We have shown that position rather than degree of sulfation is important for heparin cofactor II activity. As a consequence, 2,4- and 2,6-sulfated dermatans have high and low heparin cofactor II activities, respectively. In the present study we extended the disaccharide analysis of ascidian dermatan sulfates to additional species of the orders Stolidobranchia (Herdmania pallida, Halocynthia roretzi) and Phlebobranchia (Ciona intestinalis), aiming to investigate how sulfation evolved within Tunicata. In addition, we analysed how heparin cofactor II activity responds to dermatan sulfates containing different proportions of 2,6- or 2,4-disulfated units.

Results

Disaccharide analyses indicated a high content of disulfated disaccharide units in the dermatan sulfates from both orders. However, the degree of sulfation decreased from Stolidobranchia to Phlebobranchia. While 76% of the disaccharide units in dermatan sulfates from stolidobranch ascidians are disulfated, 53% of disulfated disaccharides are found in dermatan sulfates from phlebobranch ascidians. Besides this notable difference in the sulfation degree, dermatan sulfates from phlebobranch ascidians contain mainly 2,6-sulfated disaccharides whereas dermatan sulfate from the stolidobranch ascidians contain mostly 2,4-sulfated disaccharides, suggesting that the biosynthesis of dermatan sulfates might be differently regulated during tunicates evolution. Changes in the position of sulfation on N-acetylgalactosamine in the disaccharide [→4IdoA(2-Sulfate)β-1→3GalNAcβ-1→] modulate heparin cofactor II activity of dermatan sulfate polymers. Thus, high and low heparin cofactor II stimulating activity is observed in 2,4-sulfated dermatan sulfates and 2,6-sulfated dermatan sulfates, respectively, confirming the clear correlation between the anticoagulant activities of dermatan sulfates and the presence of 2,4-sulfated units.

Conclusions

Our results indicate that in ascidian dermatan sulfates the position of sulfation on the GalNAc in the disaccharide [→4IdoA(2S)β-1→3GalNAcβ-1→] is directly related to the taxon and that the 6-O sulfation is a novelty apparently restricted to the Phlebobranchia. We also show that the increased content of [→4IdoA(2S)β-1→3GalNAc(4S)β-1→] disaccharide units in dermatan sulfates from Stolidobranchia accounts for the increased heparin cofactor II stimulating activity.  相似文献   

5.
Zhang Y  Ping G  Kaji N  Tokeshi M  Baba Y 《Electrophoresis》2007,28(18):3308-3314
We describe a microchip electrophoresis (MCE) method for the assay of unsaturated disaccharides of chondroitin sulfates, dermatan sulfates, and hyaluronic acid (HA). Poly(vinyl alcohol) (PVA) could be irreversibly adsorbed onto poly(methyl methacrylate) (PMMA) substrates and this approach was applicable for dynamic coating. The characteristics of the PMMA surface with PVA coating were evaluated in terms of the wettability, EOF, and adsorption of 2-aminoacridone (AMAC)-labeled disaccharide. The water contact angle decreased from 73 degrees on a pristine PMMA surface to 37.5 degrees on a PVA-coated surface, indicating that the PVA coating increased hydrophilicity. EOF was reduced approximately twofold and was relatively stable. Scanning electron microscopy and fluorescence microscopy images showed that adsorption of AMAC-labeled disaccharides was dramatically suppressed. Using the PVA coating, baseline separation of two pairs of glycosaminoglycan (GAG) disaccharide isomers, DeltaDi-diS(B)/DeltaDi-diS(D) and DeltaDi-0S/DeltaDi-HA, was achieved in Tris-borate buffer within 130 s by MCE.  相似文献   

6.
The separation and quantitative analysis of enzymatic degradation products of isomeric chondroitin sulfates by high-performance liquid chromatography (HPLC) are described. The substituted unsaturated disaccharides which result from digestion of chondroitin sulfates with chondroitinase are quickly separated on polar absorbents such as silica gel. The UV absorption properties of these unsaturated disaccharides permit UV measurement with detection limits of approximately 100 ng. Their separation by HPLC facilitates the use of enzymatic methods for the determination of chondroitin sulfates A, B and C. The potential of this method in clinical application is demonstrated by quantitative assays of glycosaminoglycans from a normal urine and urine from a patient with Hunter syndrome. The results are consistent with amount of isomeric chondroitin sulfates found in comparable urines by others.  相似文献   

7.
This work describes improved workup and instrumental conditions to enable robust, sensitive glycosaminoglycan (GAG) disaccharide analysis from complex biological samples. In the process of applying CE with LIF to GAG disaccharide analysis in biological samples, we have made improvements to existing methods. These include (i) optimization of reductive amination conditions, (ii) improvement in sensitivity through the use of a cellulose cleanup procedure for the derivatization, and (iii) optimization of separation conditions for robustness and reproducibility. The improved method enables analysis of disaccharide quantities as low as 1 pmol prior to derivatization. Biological GAG samples were exhaustively digested using lyase enzymes, the disaccharide products and standards were derivatized with the fluorophore 2‐aminoacridone and subjected to reversed polarity CE‐LIF detection. These conditions resolved all known chondroitin sulfate (CS) disaccharides or 11 of 12 standard heparin/heparan sulfate disaccharides, using 50 mM phosphate buffer, pH 3.5, and reversed polarity at 30 kV with 0.3 psi pressure. Relative standard deviation in migration times of CS ranged from 0.1 to 2.0% over 60 days, and the relative standard deviations of peak areas were less than 3.2%, suggesting that the method is reproducible and precise. The CS disaccharide compositions are similar to those obtained by our group using tandem MS. The reversed polarity CE‐LIF disaccharide analysis protocol yields baseline resolution and quantification of heparin/heparan sulfate and CS/dermatan sulfate disaccharides from both standard preparations and biologically relevant proteoglycan samples. The improved CE‐LIF method enables disaccharide quantification of biologically relevant proteoglycans from small samples of intact tissue.  相似文献   

8.
A sensitive chemiluminescence high-performance liquid chromatographic method has been developed for the determination of hyaluronic acid, chondroitin sulphate and dermatan sulphate as their unsaturated disaccharide-dansylhydrazine derivatives involving an effective sample clean-up system. The dansylhydrazones of the unsaturated disaccharides derived from the hyaluronic acid, chondroitin sulphate and dermatan sulphate by chondroitinase ABC and/or chondroitinase ACII, were separated by reversed-phase chromatography using a mixture of 0.1 M sodium acetate buffer (pH 6.0) and 80% acetonitrile on a column (250 mm x 4.0 mm I.D.) packed with amide-80 silica beads (5 microns diameter). For post-column elution in the chemiluminescence system, 1 mM bis[2-(3,6,9-trioxadecanyloxycarbonyl)-4-nitrophenyl]oxalate and 3mM hydrogen peroxide in acetonitrile were used. The detection limit of each glycosaminoglycan was 100 fmol. The method was applicable to the determination of the levels of hyaluronic acid, chondroitin sulphate and dermatan sulphate in rat peritoneal mast cells.  相似文献   

9.
We established a highly sensitive LC/MS/MS method for the analysis of the disaccharides produced from keratan sulfates (KS). It was revealed that the disaccharides produced by keratanase II enzymatic digestion of KS could be determined with high sensitivity by negative ion mode of multiple reaction monitoring. Furthermore, monosulfated and disulfated disaccharides can be separated using a Hypercarb (2.0 mm i.d. x 150 mm, 5 microm) with a gradient elution of acetonitrile-0.01 m ammonium bicarbonate (pH 10). This method was applied to the determination of KS in serum and plasma of control subjects. The intra-day precision expressed as %CV was within 6.8% for five replicate analyses with three different control serum. The inter-day (overall, n = 15) precision was within 7.3% for three days. This method is sensitive, reproducible and would be useful for clinical analysis.  相似文献   

10.
A method has been developed for the identification and quantitative determination of sulphated disaccharides derived from chondroitin sulphate (CS) and dermatan sulphate (DS) chains attached to proteoglycans (PGs). After digestion with Chondroitinase ABC, the pool of disaccharides can be directly separated by liquid chromatography on a porous graphitized carbon (PGC) column and identified by on-line electrospray mass spectrometry under negative ionization conditions. The relative intensities of the fragment ions obtained by MS/MS allow to distinguish the sulphate position. Calibration with standard disaccharides allows the quantification of the different isomers. The method showed good repeatability in terms of relative standard deviation (RSD < 2%) and linearity between 0.5 and 50 ng (total injected amount) for both 4- and 6-sulphated disaccharides. The limit of detection achieved in full scan mode was 0.1 ng. The methodology was applied to different types of biological samples obtained from patients suffering from chronic lung inflammation such as: lung tissue, bronchoalveolar lavage fluid (BALF), induced sputum and urine.  相似文献   

11.
Versican is the major matrix proteoglycan in aortic wall and participates in various biological functions of the tissue. In the present study the molecular characteristics of versican isolated from normal human aorta as well as those of versican expressed in aneurysmal aortic tissue were examined. Versican was isolated by combined anion-exchange and gel permeation chromatography and was further characterized by high-performance liquid chromatography, polyacrylamide gel electrophoresis and immunoblotting. In both tissues versican is exclusively substituted with chondroitin sulfate chains, in contrast to other human tissues where both chondroitin and dermatan sulfate chains are attached onto versican core proteins. Except for the significant decrease in the concentration of versican in the aneurysmal tissue, this PG undergoes specific alterations in the aneurysmal tissue. The molecular size of versican isolated from diseased tissue is decreased with a simultaneous increase in the ratio of glycosaminoglycan to protein in this tissue. The latter reflect the extensive fragmentation of versican in the diseased tissue and most probably the generation of shorter peptides enriched to glycosaminoglycan chains. Although the size of chondroitin sulfate chains is identical in both versican preparations, a significant increase in the percentage of 6-sulfated disaccharides is observed in chondroitin sulfate chains of versican in aneurysmal aortas, which is accompanied by decrease in 4-sulfated and non-sulfated units.  相似文献   

12.
Galactosaminoglycans, i.e. dermatan sulfate (DS) and chondroitin sulfate, are linear heteropolysaccharides consisting of repeating disaccharide units of L-iduronic acid (L-IdoA) or D-glucuronic acid (D-GlcA) residues linked to N-acetyl-galactosamine. High-performance capillary electrophoresis (HPCE or CE) has been successfully used for determining the disaccharide composition of glycosaminoglycans. However, only limited information is available on how to identify oligomeric domains rich in D-GlcA or L-IdoA. The aim of this study was therefore to develop a rapid and accurate CE procedure by which such oligosaccharides can be determined together with the variously sulfated disaccharides. Isolated dermatan sulfates of human origin were separately digested with chondroitinases ABC, AC and B and the enzymic products were derivatized with 2-aminoacridone. CE analysis of these products was performed using a phosphate buffer, pH 3.0, and reversed polarity at 30 kV. The derivatization enabled their detection with laser-induced fluorescence (LIF) and UV at 260 nm at much higher sensitivity than the detection of nonderivatized delta-saccharides at 232 nm and therefore components undetectable at 232 nm were nicely detected after derivatization. Except for delta-disaccharides, altogether five distinct oligosaccharides with differences in charge density were identified. Depending on the lyase that produced these oligomers, information on the presence of L-IdoA- or D-GlcA-containing domains within the DS chain and the sulfation pattern of these oligomeric domains was obtained. This CE method could also be useful in studying the functional oligomeric domains in galactosaminoglycan chains.  相似文献   

13.
A high-performance liquid chromatographic (HPLC) method for quantifying unsaturated hexasaccharide and tetrasaccharide from Streptomyces hyaluronidase enzyme digestion products of hyaluronic acid was developed using a gel-permeation column packed with a sulphated polystyrene-divinylbenzene gel. For the oligosaccharides, the separation was accomplished in less than 7 min with a detection limit of 65 ng. An unsaturated non-sulphated disaccharide prepared from hyaluronic acid (delta Di-HA) and an unsaturated sulphated disaccharide (delta Di-4S) were analyzed by a HPLC method using a combination of two different gel-permeation columns. The separation of the disaccharides required less than 17 min at a flow rate of 0.7 ml/min with detection limits of as little as 4 ng for delta Di-HA and 5 ng for delta Di-4S. Both chromatographic methods were used for assay of a major component of hyaluronic acid and trace amounts of chondroitin sulphates in rabbit synovial fluid. The resulting contents of hyaluronic acid were compared to the values of polymeric hyaluronic acid directly measured by a HPLC method using two gel-permeation columns packed with a poly(hydroxyalkyl methacrylate) gel and the amounts of hyaluronic acid converted from uronic acid content determined by a colorimetric method.  相似文献   

14.
Chemokine-glycosaminoglycan (GAG) interactions have been shown to be essential for in vivo chemokine signaling, which functions in such diverse processes as inflammation, development, and cancer metastasis. Despite the importance of these interactions, the saccharide sequence dependency of chemokine-GAG interactions is poorly understood. In a recent study, FT-ICR mass spectrometry was used to show that the chemokine CCL2 (monocyte chemoattractant protein 1) binds only to the 11- and 12-sulfated components of a heparin octasaccharide library. Although the exact structure of the fully sulfated, 12-sulfated octasaccharide is known, the 11-sulfated species could have a number of sulfated disaccharide sequences. In the current study, the composition of the 11-sulfated heparin octasaccharides, as well as the composition of CCL2 affinity purified 11-sulfated heparin octasaccharides, were examined by tandem MS. Of the three possible singly desulfated disaccharides, one species, III-S, is enriched by CCL2 affinity purification, indicating that the 11-sulfated heparin octasaccharides containing this disaccharide are preferentially bound to CCL2. These data suggest that 2-O and N sulfation of heparin may be of greater importance to CCL2-heparin binding than 6-O sulfation.  相似文献   

15.
Volpi N  Maccari F  Linhardt RJ 《Electrophoresis》2008,29(15):3095-3106
Complex natural polysaccharides, glycosaminoglycans (GAGs), are a class of ubiquitous macromolecules that exhibit a wide range of biological functions and participate and regulate multiple cellular events and (patho)physiological processes. They are generally present either as free chains (hyaluronic acid and bacterial acidic polysaccharides) or as side chains of proteoglycans (PGs; chondroitin/dermatan sulfate, heparin/heparan sulfate, and keratan sulfate) and are most often found in cell membranes and in the extracellular matrix. The recent emergence of modern analytical tools for their study has produced a virtual explosion in the field of glycomics. CE, due to its high resolving power and sensitivity, has been useful in the analysis of intact GAGs and GAG-derived oligosaccharides and disaccharides affording concentration and structural characterization data essential for understanding the biological functions of GAGs. In this review, novel off-line and on-line CE-MS and MS/MS methods for screening of GAG-derived oligosaccharides and disaccharides will be discussed.  相似文献   

16.
Heparan sulfate is a linear polysaccharide and serves as an important biomarker to monitor patient response to therapies for MPS III disorder. It is challenging to analyze heparan sulfate intact owing to its complexity and heterogeneity. Therefore, a sensitive, robust and validated LC–MS/MS method is needed to support the clinical studies for the quantitation of heparan sulfate in biofluids under regulated settings. Presented in this work are the results of the development and validation of an LC–MS/MS method for the quantitation of heparan sulfate in human urine using selected high‐abundant disaccharides as surrogates. During sample processing, a combination of analytical technologies have been employed, including rapid digestion, filtration, solid‐phase extraction and chemical derivatization. The validated method is highly sensitive and is able to analyze heparan sulfate in urine samples from healthy donors. Disaccharide constitution analysis in urine samples from 25 healthy donors was performed using the assay and demonstrated the proof of concept of using selected disaccharides as a surrogate for validation and quantitation.  相似文献   

17.
Negative ion fast-atom bombardment tandem mass spectrometry has been used in the analysis of monosulfated disaccharides. These commercially obtained disaccharides have been enzymatically prepared from glycosaminoglycans using polysaccharide lyases. Three disaccharides from chondroitin sulfate and dermatan sulfate and two disaccharides from heparan sulfate and chemically derivatized heparin were analyzed. All five disaccharides were isomeric, with differences in sulfate position and linkage position. The full-scan mass spectra are useful in differentiating isomers when the sulfate group resides on different saccharide units. This structural information was obtained from fragment ions produced through cleavage at the glycosidic linkage. the full-scan mass spectra of each monosulfated disaccharide also produced intense molecular anions having long lifetimes. Collisional activation of these resulted in tandem mass spectra rich in significant product ions. Some of these fragment ions were formed through ring cleavage and were useful in the determination of both sulfate and linkage position.  相似文献   

18.
Chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans display variability of sulfation in their constituent disaccharide repeats during chain elongation. Since a large proportion of the extracellular matrix of the central nervous system (CNS) is composed of proteoglycans, CS/DS disaccharide degree and profile of sulfation play important roles in the functional diversity of neurons, brain development, and some of its pathological states. To investigate the sulfation pattern of CS/DS structures expressed in CNS, we introduced here a novel method based on an advanced system encompassing fully automated chip nanoelectrospray ionization (nanoESI) in the negative ion mode and high capacity ion trap multistage mass spectrometry (MS2–MS3) by collision-induced dissociation (CID). This method, introduced here for the first time in glycomics of brain glycosaminoglycans, was particularly applied to structural investigation of disaccharides obtained by β-elimination and digestion with chondroitin B and AC I lyase of hybrid CS/DS chains from wild-type mouse brain. Screening in the chip-MS mode of DS disaccharide fraction resulting after depolymerization with chondroitin B lyase revealed molecular ions assigned to monosulfated disaccharide species having a composition of 4,5-Δ-[IdoA-GalNAc]. By optimized CID MS2–MS3, fragment ions supporting the localization of sulfate ester group at C4 within GalNAc were produced. Chip ESI MS profiling of CS disaccharide fraction obtained by depolymerization of the same CS/DS chain using chondroitin AC I lyase indicated the occurrence of mono- and bisulfated 4,5-Δ-[GlcA-GalNAc]. The site of oversulfation was determined by MS2–MS3, which provided sequence patterns consistent with a rare GlcA-3-sulfate–GalNAc-6-sulfate structural motif.   相似文献   

19.
Microemulsion electrokinetic capillary chromatography (MEEKC) is a capillary electrophoresis technique in which neutral and ionized species can be resolved according to their partitioning into moving oil droplets present in the operating buffer. In this report, we present for the first time the application of MEEKC in the analysis of glycosaminoglycans. An efficient method for the separation of the variously sulfated delta-disaccharides obtained following digestion of chondroitin and dermatan sulfates with chondro/ dermato lyases and derivatization with 2-aminoacridone is described. Nonsulfated, mono-, di-, and trisulfated delta-disaccharides were completely separated using the microemulsion octane/butan-1-ol/Sodium dodecyl sulfate (SDS) in 10 mM borate buffer, pH 9.3, at 25 kV. Agreement of the obtained disaccharide composition with literature values showed that MEEKC can be used for the analysis of glycosaminoglycans.  相似文献   

20.
Various types of glycosaminoglycans (GAGs) including heparins, chondroitin sulfates, dermatan sulfate and hyaluronic acid were studied from their proton nuclear magnetic resonance (1H NMR) spectra using chemometric techniques. Despite the complexity of the 1H NMR signals, data analysis using principal component analysis enabled the different GAG classes to be distinguished and permitted their classification according to their chemical structure. The analysis of the composition of the major disaccharide unit and other relevant chemical structures in the heparin samples was performed using partial least squares regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号