首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few studies have investigated scale-up of the residence-time distribution(RTD) of particles in bubbling fluidized beds(BFBs) with continuous particle flow.Two approaches were investigated in this study:first,using well-known scaling laws that require changes in particle properties and gas velocity;second,using a simple approach keeping the same particles and gas velocity for different beds.Our theoretical analysis indicates it is possible to obtain similar RTDs in different BFBs with scaling laws if the plug-flow residence time(tplug) is changed as m0.5,where m is the scaling ratio of the bed;however,neither approach can ensure similar RTDs if tplugis kept invariant.To investigate RTD variations using two approaches without changing tplug,we performed experiments in three BFBs.The derivatives d?(θ)/dθ(where E(θ) is the dimensionless RTD density function and θ is the dimensionless time) in the early stage of the RTDs always varied with m-1,which was attributed to the fact that the particle movement in the early stage were mainly subject to dispersion.Using the simple approach,we obtained similar RTDs by separately treating the RTDs in the early and post-stages.This approach guarantees RTD similarity and provides basic rules for designing BFBs.  相似文献   

2.
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.  相似文献   

3.
Multistage fluidized beds are frequently used for product drying in industry. One advantage of these fluidized beds is that they can achieve a high throughput, when operated continuously. In this study, γ-Al2O3 particles were dried in a pilot-scale horizontal fluidized bed, without considering any comminution effects. For each experiment, the particle moisture content distribution and residence time distribution were determined. To take into account particle back mixing in our experiments, a one-dimensional population balance model that considers particle residence time was introduced into a fluidized bed-drying model. Experimental particle residence time distributions were reproduced using a tank-in-series model. Subsequently, the moisture content distribution was implemented, as a second dimension to the population balance in this model. These two-dimensional simulations were able to describe the experimental data, especially the spread in the residual particle moisture distribution, much more accurately than one-dimensional simulations. Using this novel two-dimensional model, the effects of different operating parameters (process gas temperature, solid feed rate, superficial air velocity) on the particle moisture content distribution were systematically studied.  相似文献   

4.
In this study, a CFD model coupled with heterogeneous flow structure, mass transfer equations, and chemical reaction kinetics is established to forecast the pyrolusite reduction reaction behavior. Compared with the previous studies which ignore the volume change of solids phase, the influence of volume shrinkage on reaction and flow behavior is explored in this research. Volume shrinkage of pyrolusite is proved to be non-negligible in predicting the conversion rate. The negligence of volume shrinkage leads to the overestimation of conversion rate for its inaccurate estimation of surface area for reaction. Besides, the influence of volume shrinkage on the reaction is found smaller in the scaled-up reactor.  相似文献   

5.
Most existing models for predicting bubble size and bubble frequency have been developed for freely bubbling fluidized beds. Accurate prediction of bubbling behavior in deep fluidized beds, however, has been a challenge due to the higher degree of bubble coalescence and break up, high probability of the slugging regime, partial fluidization, and chaotic behavior in the bubbling regime. In this work, the bubbling and fluidization behavior of potash particles was investigated in a deep fluidized bed employing a twin-plane electrical capacitance tomography (ECT) system. Solid volume fraction, average bubble velocity, average bubble diameter, and bubble frequency in both bubbling and slugging regimes were measured at two different bed height ratios (H/D = 3.5 and H/D = 3.78). This work is the first to illustrate a sequential view of bubbles at different superficial gas velocities in a fluidized bed. The results show that both the bubble diameter and rising velocity increased with increasing the superficial gas velocity for the two bed heights, with larger values observed in the deeper bed compared to the shallower one. Predicted values for bubble diameter, bubble rise velocity and bubble frequency from different models are compared with the experimental data obtained from the ECT system in this work. Good agreement has been achieved between the values predicted by the previous models and the experimental data for the bubble diameter and bubble rise velocity with an average absolute deviation of 16% and 15% for the bed height of 49 cm and 13% and 8% for the bed height of 53 cm, respectively.  相似文献   

6.
We present an Euler–Lagrange method for the simulation of wood gasification in a bubbling fluidized bed. The gas phase is modeled as a continuum using the 2D Navier–Stokes equations and the solid phase is modeled by a Discrete Element Method(DEM)using a soft-sphere approach for the particle collision dynamic. Turbulence is included via a Large-Eddy approach using the Smagorinsky sub-grid model.The model takes into account detailed gas phase chemistry,zero-dimensional modeling of the pyrolysis and gasification of each individual particle,particle shrinkage,and heat and mass transfer between the gas phase and the particulate phase.We investigate the influence of wood feeding rate and compare exhaust gas compositions and temperature results obtained with the model against experimental data of a laboratory scale bubbling fluidized bed reactor.  相似文献   

7.
Cycle Time Distribution (CTD) plays a critical role for determining uniformity of particle coating in spray fluidized beds. However, the CTD is influenced by both geometrical structure and operating conditions of fluidized bed. In this study, a spray fluidized bed of coating process is simulated by a comprehensive Computational Fluid Dynamics-Discrete Element Model (CFD-DEM). To achieve different behaviors of CTD, some modifications are designed on a pseudo-2D internally circulating fluidized bed, which traditionally composes of a high-velocity upward bed and low-velocity downward bed. These modifications include making the air distributor slope and/or laying a baffle in the downward bed. First, the CTD and evolution of particle size distribution under different bed structures are compared. The CTD directly influences the coating uniformity. By making the particles flowing along a parallel direction in the downward bed through the geometrical modifications, the CTD becomes narrower and the coating uniformity is significantly improved. Second, under the optimized bed structure, the influence of operating conditions on the coating uniformity is studied. Properly increasing the fluidization gas velocity and the fluidization gas temperature and reducing the liquid spray rate can improve the coating uniformity.  相似文献   

8.
Supercritical water fluidized bed reactor (SCWFBR) is a novel concept for the gasification of coal and biomass to produce hydrogen. In this work, to enhance the mixing in the axial direction, an inclined distributor is introduced to optimize the flow dynamics in SCWFBR with partitioned fluid supply. Through numerical simulations based on the two fluid model (TFM), the effects of the inclined distributor structure and operating parameters on the solid distribution and the residence time are evaluated with the optimal values determined. Numerical results show that, area ratio = 2:1, SCW velocity ratio = 3:1, flow ratio = 3.36:1 and inclination angle = 20° are the optimal design in this paper. A predictive correlation of the minimum fluidization velocity for the improved SCWFBR is also proposed based on the numerical data. The average error between the correlation and numerical simulation results is approximately 1.4% which strongly demonstrates its capability. Finally, based on the optimal design, the lab-scale reactor is further scaled up and the studies about two scale-up rules are carried out. Only the cold flow is simulated in this study without considering chemical reaction which would be involved in future work.  相似文献   

9.
A series of experiments on bubbling behavior in particle beds was performed to clarify three-phase flow dynamics in debris beds formed after core-disruptive accident (CDA) in sodium-cooled fast breeder reactors (FBRs). Although in the past, several experiments have been performed in packed beds to investigate flow patterns, most of these were under comparatively higher gas flow rate, which may be not expected during an early sodium boiling period in debris beds. The current experiments were conducted under two dimensional (2D) and three dimensional (3D) conditions separately, in which water was used as liquid phase, and bubbles were generated by injecting nitrogen gas from the bottom of the viewing tank. Various particle-bed parameters were varied, including particle-bed height (from 30 mm to 200 mm), particle diameter (from 0.4 mm to 6 mm) and particle type (beads made of acrylic, glass, alumina and zirconia). Under these experimental conditions, three kinds of bubbling behavior were observed for the first time using digital image analysis methods that were further verified by quantitative detailed analysis of bubbling properties including surface bubbling frequency and surface bubble size under both 2D and 3D conditions. This investigation, which hopefully provides fundamental data for a better understanding and an improved estimation of CDAs in FBRs, is expected to benefit future analysis and verification of computer models developed in advanced fast reactor safety analysis codes.  相似文献   

10.
An ultra-fast X-ray tomographic scanner is applied to study the hydrodynamics in a bubbling fluidized bed with and without vertical internals (e.g., heat exchanger tubes). The objective of this study is to understand the influence of vertical internals on hydrodynamic properties such as bubble volume, size and velocity and to provide measurement data for the design and scale-up of catalytic bubbling fluidized bed reactors with vertical internals. With these new measurements, correlations of bubble properties can be developed to reliably scale-up bubbling fluidized beds with vertical internals. For the investigated reactor with Geldart A/B particles, no relation between bubble size and velocity was observed for individual bubbles, i.e.; smaller bubbles tend to rise with higher velocities. A significant reduction in bubble size and sharpening of the bubble size distribution was generally obtained for a bed with vertical internals.  相似文献   

11.
Supercritical water (SCW) fluidized bed reactors convert biomass to fuels without pollutants emission. In this work, experimental studies were carried out to investigate voidage distribution in an SCW fluidized bed by capacitance probes. Quartz sands with different particle sizes were fluidized by SCW under system pressure of 20–27 MPa and temperature of 410–570 °C. The effect of operation conditions on voidage distributions of the emulsion phase (e.g. averaged voidage and probability density) is discussed. A predicting correlation between voidage and superficial velocity in emulsion phase is proposed. The relative error of the correlation is within ±25%. These research results provide useful guidance for the optimization of supercritical water gasification technology.  相似文献   

12.
In the present work a comparative study of steady state wall-to-bed heat transfer was conducted along the risers of height 2.85 m of three different circulating fluidized beds (CFBs) with bed cross sections of 0.15 m × 0.15 m, 0.20 m × 0.20 m, and 0.25 m × 0.25 m, respectively. Experiments were conducted on each CFB unit for five superficial air velocities (U = 2.5 m/s, 2.75 m/s, 3 m/s, 3.3 m/s, and 4 m/s) and two different weights of sand inventory per unit area of the distributor plate (P = 1750 N/m2 and P = 3050 N/m2) with average sand particle size of 460 μm. Bed temperature distributions across the three risers were measured and compared at different heights (1.04 m, 1.64 m, and 2.24 m above the distributor plate). Axial distribution of heat transfer coefficient along the height of riser was evaluated and compared for the three bed cross sections. Effect of superficial velocity of air, sand inventory, and bed cross section on bed temperature and heat transfer coefficient was investigated. An empirical correlation was developed for the bed Nusselt number as a function of various non-dimensional parameters based on the parametric study. The correlation was compared with available literatures.  相似文献   

13.
This work focuses on the hydrodynamic behavior of admixtures of Geldart-B magnetizable and nonmagnetizable particles in a magnetized fluidized bed. The applied magnetic field was axial, uniform, and steady. In operating the beds, the magnetization-LAST mode was adopted under which four distinct flow regimes exist: fixed, magnetized-bubbling, partial segregation-bubbling, and total segregation-bubbling. The operational phase diagram was drawn to display the transitions between flow regimes in an intuitive manner. Only in the magnetized-bubbling regime could the magnetic field reduce the bubble size and improve fluidization quality. In the segregation-bubbling regimes, fluidization quality deteriorated as segregation developed. The segregation of the binary mixture was quantitatively studied by observing pressure drops in the local bed. Reasons for the improvement in fluidization quality as well as the occurrence of segregation were analyzed. Furthermore, the flow regime transition under magnetization-LAST operation mode was different from that under magnetization-FIRST mode. The magnetically stabilized bed (MSB) flow regime, which could be easily created under magnetization-FIRST mode, could no longer be achieved under magnetization-LAST mode. With the admixture, the MSB was proved to be a metastable equilibrium state. Under the magnetization-LAST mode, the admixture bed reached directly the stable equilibrium state—bubbling with segregation.  相似文献   

14.
We performed an experimental study to investigate the effects of various parameters on the attrition of bed material and its size distribution with increasing operation time in a recirculating fluidized bed (RCFB). The studied parameters included superficial velocity of fluidizing air, bed inventory, and spacing between the jet top and draft tube bottom (spacer height). The bed material was prepared from Indian Standard (IS) Grade I sand from sieves with a size range of 2.20–1.00 mm. Experiments were performed at ambient conditions, with the superficial air velocity ranging from 7.13–9.16 m/s, a bed inventory of 7–10 kg, spacing of 0.085 and 0.045 m between the jet top and draft tube bottom, and an operating time of 40 h. We investigated the influence of these parameters in terms of changes in the size distribution of particles, changes in the %-weight of particles of different size ranges, generation of particles with smaller diameters, the decrease of the downcomer bed height, variations in the coefficient of uniformity and coefficient of curvature, and material loss from entrainment of fines with increasing operation time. The mode of attrition was abrasion in all experiments. We found that with increasing operation time and other parameters (bed inventory, superficial air velocity, and spacer height) attrition of the bed material also increased. Generation and elutriation of fines were more pronounced at higher superficial air velocity, bed inventory, and spacer height.  相似文献   

15.
We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pressure distributions along the wall of the riser were measured. Additional measurements from a smaller pseudo-2D riser (Kallio et al., 2009; Shah et al., 2012) were used to analyze horizontal solids volume fraction profiles. The experimental data were compared with simulation results carried out using an Euler–Euler approach. A mesh sensitivity study was conducted for numerical simulations and effects associated with simplifying real 3D geometry to a 2D model were examined. In addition, the effect of using an algebraic equation to represent the granular temperature versus a full partial differential equation also was examined for numerical simulations. Results showed small but significant near-wall sensitivity of the flow variables to mesh size. Substantial differences in mean pressure, solids distribution, and solid velocities were obtained, when 2D and 3D simulation results were compared. Finally, applying the simplified granular temperature equation for turbulent fluidization and for dilute-phase transport can lead to incorrect predictions in models.  相似文献   

16.
17.
A computational fluid dynamics (CFD) modeling of the gas–solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian–Eularian method with the kinetic theory of granular flow is used to solve the gas–solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle–wall restitution coefficient. The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operating conditions of the CFB riser.  相似文献   

18.
The magnetized fluidized bed (MFB) with Geldart-B particles exhibits many distinct flow regimes depending on the magnetic field intensity (H) and gas velocity (Ug). The identification of these regimes was reviewed for the MFB with magnetizable particles and that with binary admixture of magnetizable and nonmagnetizable particles. Meanwhile, methods for determining the boundaries between two adjacent flow regimes were clarified. The MFB state was found to depend not only on H and Ug but also on their application sequence (i.e., operation mode) within certain operating zones. The dependence feature arose from that the MFB therein could have different equilibrium states for the same combination of H and Ug. Furthermore, such a polymorphic characteristic of the MFB was revealed to result from the internal friction among the particles that were in unfluidized/packed state. Many of the MFB states were demonstrated to be in metastable equilibrium. Nevertheless, they differed significantly from the metastates well-known in the discipline of physical chemistry, such as supercooling and superheated. In fact, they belonged to the amorphous/glass state. This review will deepen our hydrodynamic understanding of the MFB and further promote its commercial application in the chemical and biochemical industries.  相似文献   

19.
The 440 t/h circulating fluidized bed boiler was numerically simulated by the Computational Particle Fluid Dynamics (CPFD) method. The combustion characteristics of circulating fluidized bed boiler and the effect of secondary air on NO emission were investigated. The full-scale three-dimensional model of a 440 t/h circulating fluidized bed boiler was established. The rationality of the grid was validated by the experimental data of material layer resistance. The accuracy of the simulation was validated by measuring the temperature of each measuring point in the dense phase area. The combustion conditions in the furnace under different setting modes were simulated. The effects of secondary air rates on NO formation in fluidized bed were predicted. The results show that when the secondary air rate increases to 27%, the proper secondary air rate has a positive effect on the inhibition of NO generation, and the proper strengthening of the central air supply will improve the permeability of the secondary air and make the combustion more uniform and stable. When the secondary air rate increases to 33%, excessive improvement of air classification and central air distribution will affect the stability of circulating fluidized bed operation. Therefore, air classification and strengthening of central air supply can be used together to inhibit the generation of NO.  相似文献   

20.
A magnetically stabilized fluidized bed (MSFB, φ 500mm x 2100mm) was designed to study dust removal from flue gas. Based on the mechanism of dust removal in a fixed bed, the effects on collection efficiency of magnetic field intensity, ratio of flue gas velocity to minimum fluidization velocity, bed height, and particle average diameter, were investigated. Then feasible methods for MSFB to better remove dust were proposed. Over 95% of dust removal with MSFB can be achieved, when stable fluidization is maintained and when magnetic particles are frequently renewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号