共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen‐Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions 下载免费PDF全文
Zaiyong Zhang Xuan Wang Dr. Huili Ma Nan Gan Qi Wu Zhichao Cheng Kun Ling Mingxing Gu Chaoqun Ma Long Gu Prof. Zhongfu An Prof. Wei Huang 《Angewandte Chemie (International ed. in English)》2018,57(15):4005-4009
Ultralong organic phosphorescence (UOP) based on metal‐free porous materials is rarely reported owing to rapid nonradiative transition under ambient conditions. In this study, hydrogen‐bonded organic aromatic frameworks (HOAFs) with different pore sizes were constructed through strong intralayer π–π interactions to enable ultralong phosphorescence in metal‐free porous materials under ambient conditions for the first time. Impressively, yellow UOP with a lifetime of 79.8 ms observed for PhTCz‐1 lasted for several seconds upon ceasing the excitation. For PhTCz‐2 and PhTCz‐3, on account of oxygen‐dependent phosphorescence quenching, UOP could only be visualized in N2, thus demonstrating the potential of phosphorescent porous materials for oxygen sensing. This result not only outlines a principle for the design of new HOFs with high thermal stability, but also expands the scope of metal‐free luminescent materials with the property of UOP. 相似文献
2.
Energetic N‐Nitramino/N‐Oxyl‐Functionalized Pyrazoles with Versatile π–π Stacking: Structure–Property Relationships of High‐Performance Energetic Materials 下载免费PDF全文
Dr. Ping Yin Dr. Lauren A. Mitchell Dr. Damon A. Parrish Prof. Dr. Jean'ne M. Shreeve 《Angewandte Chemie (International ed. in English)》2016,55(46):14409-14411
N‐Nitramino/N‐oxyl functionalization strategies were employed to investigate structure–property relationships of energetic materials. Based on single‐crystal diffraction data, π–π stacking of pyrazole backbones can be tailored effectively by energetic functionalities, thereby resulting in diversified energetic compounds. Among them, hydroxylammonium 4‐amino‐3,5‐dinitro‐1H‐pyrazol‐1‐olate and dipotassium N,N′‐(3,5‐dinitro‐1H‐pyrazol‐1,4‐diyl)dinitramidate, with unique face‐to‐face π–π stacking, can be potentially used as a high‐performance explosive and an energetic oxidizer, respectively. 相似文献
3.
4.
Facile Fabrication of Solid‐state Electrochemiluminescence Sensor via Non‐covalent π‐π Stacking and Covalent Bonding on Graphite Electrode 下载免费PDF全文
Herein, a facile and efficient method was developed for fabrication of solid‐state electrochemiluminescence (ECL) sensor via non‐covalent π‐π stacking and covalent bonding on the graphite electrode (GE) surface. The electrode was firstly modified with 1‐aminopyrene via π‐π stacking between GE surface and the pyrene moiety. Thereafter a stable and efficient solid‐state ECL sensor was fabricated by covalent immobilization of ruthenium(II) onto the GE surface via amidation reaction between the 1‐aminopyrene and bis(2,2′‐bipyridyl)(4‐methyl‐4′‐carboxypropyl‐2,2′‐bipyridyl) ruthenium(II) bishexafluorophosphate. The sensor has been investigated using tripropylamine and tetracycline as representative analytes, and low detection limits of 0.7 nM and 3.5 nM (S/N=3) were reached, respectively. 相似文献
5.
《Macromolecular rapid communications》2017,38(16)
A novel ladder‐type donor pyran‐bridged indacenodithiophene (IDTP) is developed by introducing two oxygen atoms into indacenodithiophene unit. IDTP possesses a twisted backbone and leads to facially asymmetric arrangement of side chains, resulting in enhanced local π–π stacking of according polymer poly[(5,5,11,11‐tetrakis(4‐octylphenyl)‐5,11‐dihydrothieno[2′,3′:5,6]pyrano[3,4‐g]thieno[3,2‐c]isochromene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothiadiazole)] (PIDTP)‐FBT, which shows extended absorption range. Moreover, oxygen atoms render deeper highest occupied molecular orbital (HOMO) levels of poly[indacenodithiophene‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothiadiazole)] (PIDTP)‐FBT compared with PIDT‐FBT, therefore bringing a higher open‐circuit voltage (V oc). 相似文献
6.
《Angewandte Chemie (International ed. in English)》2017,56(43):13259-13263
Three compounds with phenyl and pentafluorophenyl rings bridged by (CH2)3 and (CH2)2SiMe2 units were synthesized by hydrosilylation and C−C coupling reactions. Their solid‐state structures are dominated by intermolecular π stacking interactions, primarily leading to dimeric or chain‐type aggregates. Analysis of free molecules in the gas phase by electron diffraction revealed the most abundant conformer to be significantly stabilized by intramolecular π–π interactions. For the silicon compounds, structures characterized by σ–π interactions between methyl and pentafluorophenyl groups are second lowest in energy and cannot be excluded completely by the gas electron diffraction experiments. C6H5(CH2)3C6F5, in contrast, is present as a single conformer. The gas‐phase structures served as a reference for the evaluation of a series of (dispersion‐corrected) quantum‐chemical calculations. 相似文献
7.
Construction of Hetero‐Four‐Layered Tripalladium(II) Cyclophanes by Transannular π⋅⋅⋅π Interactions 下载免费PDF全文
Haeri Lee Dr. Tae Hwan Noh Prof. Dr. Ok‐Sang Jung 《Angewandte Chemie (International ed. in English)》2016,55(3):1005-1009
A synthetic strategy for the generation of new molecular species utilizing a provision of nature is presented. Nano‐dimensional (23(2)×21(1)×16(1) Å3) hetero‐four‐layered trimetallacyclophanes were constructed by proof‐of‐concept experiments that utilize a suitable combination of π???π interactions between the central aromatic rings, tailor‐made short/long spacer tridentate donors, and the combined helicity. The behavior of the unprecedented four‐layered metallacyclophane system offers a landmark in the development of new molecular systems. 相似文献
8.
Dioxobis(pyridine‐2‐thiolate‐N, S)molybdenum(VI) (MoO2(Py‐S)2), reacts with of 4‐methylpyridine (4‐MePy) in acetonitrile, by slow diffusion, to afford the title compound. This has been characterized by elemental analysis, IR and 1H NMR spectroscopy. The X‐ray single crystal structure of the complex is described. Structural studies reveal that the molecular structure consists of a β‐Mo8O26 polyanion with eight MoO6 distorted edge‐shared octahedra with short terminal Mo–O bonds (1.692–1.714 Å), bonds of intermediate length (1.887–1.999 Å) and long bonds (2.150–2.473 Å). Two different types of hydrogen bonds have been found: N–H···O (2.800–3.075 Å) and C–H···O (3.095–3.316 Å). The presence of π–π stacking interactions and strong hydrogen bonds are presumably responsible for the special disposition of the pyridinic rings around the polyanion cluster. 相似文献
9.
Hole Mobility Modulation in Single‐Crystal Metal Phthalocyanines by Changing the Metal–π/π–π Interactions 下载免费PDF全文
Dr. Hui Jiang Dr. Peng Hu Dr. Jun Ye Dr. Rakesh Ganguly Dr. Yongxin Li Dr. Yi Long Prof. Denis Fichou Prof. Wenping Hu Prof. Christian Kloc 《Angewandte Chemie (International ed. in English)》2018,57(32):10112-10117
Weak intermolecular interactions in organic semiconducting molecular crystals play an important role in determining molecular packing and electronic properties. Single crystals of metal‐free and metal phthalocyanines were synthesized to investigate how the coordination of the central metal atom affects their molecular packing and resultant electronic properties. Single‐crystal field‐effect transistors were made and showed a hole mobility order of ZnPc>MnPc>FePc>CoPc>CuPc>H2Pc>NiPc. Density functional theory (DFT) and 1D polaron transport theory reach a good agreement in reproducing the experimentally measured trend for hole mobility. Additional detail analysis at the DFT level suggests the metal atom coordination into H2Pc planes can tune the hole mobility via adjusting the intermolecular distances along the shortest axis with closest parallel π stackings. 相似文献
10.
11.
《Journal of computational chemistry》2018,39(2):93-104
The characteristics of the concave–convex π‐π interactions are evaluated in 32 buckybowl dimers formed by corannulene, sumanene, and two substituted sumanenes (with S and CO groups), using symmetry‐adapted perturbation theory [SAPT(DFT)] and density functional theory (DFT). According to our results, the main stabilizing contribution is dispersion, followed by electrostatics. Regarding the ability of DFT methods to reproduce the results obtained with the most expensive and rigorous methods, TPSS‐D seems to be the best option overall, although its results slightly tend to underestimate the interaction energies and to overestimate the equilibrium distances. The other two tested DFT‐D methods, B97‐D2 and B3LYP‐D, supply rather reasonable results as well. M06‐2X, although it is a good option from a geometrical point of view, leads to too weak interactions, with differences with respect to the reference values amounting to about 4 kcal/mol (25% of the total interaction energy). © 2017 Wiley Periodicals, Inc. 相似文献
12.
Zhongyu Mou Prof. Takashi Kubo Prof. Miklos Kertesz 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(50):18230-18236
Homogeneous π‐stacking dimers of phenalenyl and its derivatives have gained tremendous interest as components of conducting organic materials. For the first time, we investigate theoretically heterogeneous phenalenyl π‐dimers. Key parameters, including charge transfer, interaction energy, singly occupied molecular orbital (SOMO) energy, and spin density, are studied with the help of density functional theory. We find that the amount of charge transfer between the two monomers in phenalenyl π‐dimers correlates with the difference in the SOMO energies of the constituent monomers, where the SOMO energy plays the role of a monomer (group) electronegativity index. Charge transfer plays an important role in stabilizing the heterodimers while maintaining a significant diradicaloid character. For five heterodimers the interaction energy is found to be as large as ?30 to ?50 kcal mol?1. The presented correlation between the monomer SOMO energy levels and their stability can provide a simple predictive tool to design new highly stable π‐stacking heterodimers. 相似文献
13.
《Macromolecular rapid communications》2017,38(22)
Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution‐processed solar cells containing A–π–D–π–A‐type small molecules and fullerenes have reached 11%. However, the method for designing high‐performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A–π–D–π–A electron‐donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. 相似文献
14.
Zachary N. Vealey Brandon Q. Mercado Patrick H. Vaccaro 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(10):730-737
Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This molecule, which juxtaposes ketonic, hydroxylic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing intermolecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π–π, C—H…π, or ion–π interactions. The organic salt (TrOH·iBA) formed by a facile proton‐transfer reaction between tropolone (TrOH) and isobutylamine (iBA), namely isobutylammonium 7‐oxocyclohepta‐1,3,5‐trien‐1‐olate, C4H12N+·C7H5O2−, has been investigated by X‐ray crystallography, with complementary quantum‐chemical and statistical‐database analyses serving to elucidate the nature of attendant intermolecular interactions and their synergistic effects upon lattice‐packing phenomena. The crystal structure deduced from low‐temperature diffraction measurements displays extensive hydrogen‐bonding networks, yet shows little evidence of the aryl forces (viz. π–π, C—H…π, and ion–π interactions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent interactions occurring between the proton‐donating and proton‐accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven‐membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen‐bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor–acceptor distances of any troponoid‐based complex, combined with unambiguous signatures of enhanced proton‐delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions. 相似文献
15.
Design of Aromatic Helical Polymers for STM Visualization: Imaging of Single and Double Helices with a Pattern of π–π Stacking 下载免费PDF全文
Dr. Junyan Zhu Prof. Zeyuan Dong Prof. Shengbin Lei Dr. Lili Cao Prof. Bing Yang Dr. Wenfang Li Yuanchao Zhang Prof. Junqiu Liu Prof. Jiacong Shen 《Angewandte Chemie (International ed. in English)》2015,54(10):3097-3101
From scanning tunneling microscopy (STM) images of rationally designed helical polymers with a pattern of π–π stacking, we successfully identified the single‐ and double‐helical superstructures. The STM images of the helical structures revealed the smallest helical architecture (diameter ca. 1.3 nm) that has been seen so far. Furthermore, the interconversion of single and double helices was further underpinned by experimental analyses. Significantly, the formation of double helices induced different supramolecular chirality to that observed for the single helices. 相似文献
16.
Sumesh Nicholas 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(3):211-215
The peptide N‐benzyloxycarbonyl‐L‐valyl‐L‐tyrosine methyl ester or NCbz‐Val‐Tyr‐OMe (where NCbz is N‐benzyloxycarbonyl and OMe indicates the methyl ester), C23H28N2O6, has an extended backbone conformation. The aromatic rings of the Tyr residue and the NCbz group are involved in various attractive intra‐ and intermolecular aromatic π–π interactions which stabilize the conformation and packing in the crystal structure, in addition to N—H...O and O—H...O hydrogen bonds. The aromatic π–π interactions include parallel‐displaced, perpendicular T‐shaped, perpendicular L‐shaped and inclined orientations. 相似文献
17.
Non‐covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host–guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non‐covalent component (e.g. protein folding, recognition) and rational interference in such ‘living’ devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ‐hole and π‐hole interactions. A σ‐ or π‐hole can be seen as positive electrostatic potential on unpopulated σ* or π(*) orbitals, which are thus capable of interacting with some electron dense region. A σ‐hole is typically located along the vector of a covalent bond such as X?H or X?Hlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ‐holes can also be found along a covalent bond with chalcogen (X?Ch), pnictogen (X?Pn) and tetrel (X?Tr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π‐hole is typically located perpendicular to the molecular framework of diatomic π‐systems such as carbonyls, or conjugated π‐systems such as hexafluorobenzene. Anion–π and lone‐pair–π interactions are examples of named π‐hole interactions between conjugated π‐systems and anions or lone‐pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well‐established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ‐ and π‐hole interactions, present a selection of inquiries that utilise σ‐ and π‐holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid‐state structures. 相似文献
18.
Prof. Dr. Youhei Takeda Kota Hatanaka Takuya Nishida Prof. Dr. Satoshi Minakata 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(30):10360-10364
A versatile phosphorus‐containing π‐conjugated building block, thieno[3,4‐c]phosphole‐4,6‐dione (TPHODO), has been developed. The utility of this simple but hitherto unknown building block has been demonstrated by preparing novel functional organophosphorus compounds and bandgap‐tunable conjugated polymers. 相似文献
19.
Valerie Paprocki Peter Hrobrik Katie L. M. Harriman Martin S. Luff Thomas Kupfer Martin Kaupp Muralee Murugesu Holger Braunschweig 《Angewandte Chemie (International ed. in English)》2020,59(31):13109-13115
The π coordination of arene and anionic heteroarene ligands is a ubiquitous bonding motif in the organometallic chemistry of d‐block and f‐block elements. By contrast, related π interactions of neutral heteroarenes including neutral bora‐π‐aromatics are less prevalent particularly for the f‐block, due to less effective metal‐to‐ligand backbonding. In fact, π complexes with neutral heteroarene ligands are essentially unknown for the actinides. We have now overcome these limitations by exploiting the exceptionally strong π donor capabilities of a neutral 1,4‐diborabenzene. A series of remarkably robust, π‐coordinated thorium(IV) and uranium(IV) half‐sandwich complexes were synthesized by simply combining the bora‐π‐aromatic with ThCl4(dme)2 or UCl4, representing the first examples of actinide complexes with a neutral boracycle as sandwich‐type ligand. Experimental and computational studies showed that the strong actinide–heteroarene interactions are predominately electrostatic in nature with distinct ligand‐to‐metal π donation and without significant π/δ backbonding contributions. 相似文献