首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal (n)-alkanes and polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were collected from Beijing in 2006 and analyzed using a thermal desorption-GC/MS technique. Annual average concentrations of n-alkanes and PAHs were 282 ± 96 and 125 ± 150 ng/m3, respectively: both were highest in winter and lowest in summer. C19–C25 compounds dominated the n-alkanes while benzo[b]fluoranthene, benzo[e]pyrene, and phenanthrene were the most abundant PAHs. The n-alkanes exhibited moderate correlations with organic carbon (OC) and elemental carbon (EC) throughout the year, but the relationships between the PAHs, OC and EC differed between the heating and non-heating seasons. The health risks associated with PAHs in winter were more than 40 times those in spring and summer even though the PM2.5 loadings were comparable. Carbon preference index values (<1.5) indicated that the n-alkanes were mostly from fossil fuel combustion. The ratios of indeno[123-cd]pyrene to benzo[ghi]pyrelene in summer and spring were 0.58 ± 0.12 and 0.63 ± 0.09, respectively, suggesting that the PAHs mainly originated from motor vehicles, but higher ratios in winter reflected an increased influence from coal, which is extensively burned for domestic heating. A comprehensive comparison showed that PAH pollution in Beijing has decreased in the past 10 years.  相似文献   

2.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   

3.
Year-round measurements of the mass concentration and optical properties of fine aerosols (PM2.5) from June 2009 to May 2010 at an urban site in Beijing were analyzed. The annual mean values of the PM2.5 mass concentration, absorption coefficient (Ab), scattering coefficient (Sc) and single scattering albedo (SSA) at 525 nm were 67 ± 66 μg/m3, 64 ± 62 Mm−1, 360 ± 405 Mm−1 and 0.82 ± 0.09, respectively. The bulk mass absorption efficiency and scattering efficiency of the PM2.5 at 525 nm were 0.78 m2/g and 5.55 m2/g, respectively. The Ab and Sc showed a similar diurnal variation with a maximum at night and a minimum in the afternoon, whereas SSA displayed an opposite diurnal pattern. Significant increases in the Ab and Sc were observed in pollution episodes caused by the accumulation of pollutants from both local and regional sources under unfavorable weather conditions. Aerosol loadings in dust events increased by several times in the spring, which had limited effects on the Ab and Sc due to the low absorption and scattering efficiency of dust particles. The frequency of haze days was the highest in autumn because of the high aerosol absorption and scattering under unfavorable weather conditions. The daily PM2.5 concentration should be controlled to a level lower than 64 μg/m3 to prevent the occurrence of haze days according to its exponentially decreased relationship with visibility.  相似文献   

4.
Aerosol absorption coefficient σap involves the additive contribution of both black carbon aerosol (BC) and dust aerosol. The linear statistical regression analysis approach introduced by Fialho et al. (2005) is used to estimate the absorption exponents of BC and dust aerosol absorption coefficients, and further to separate the contributions of these two types of aerosols from the total light absorption coefficient measured in the hinterland of Taklimakan Desert in the spring of 2006. Absorption coefficients are measured by means of a 7-wavelength Aethalometer from 1 March to 31 May and from 1 November to 28 December, 2006. The absorption exponent of BC absorption coefficient α is estimated as (?0.95 ± 0.002) under background weather (supposing the observed absorption coefficient is due only to BC); the estimated absorption exponent of dust aerosol absorption coefficient β during the 6 dust storm periods (strong dust storm) is (?2.55 ± 0.009). Decoupling analysis of the measured light absorption coefficients demonstrates that, on average, the light absorptions caused by dust aerosol and BC make up about 50.5% and 49.5% respectively of the total light absorption at 520 nm; during dust weather process periods (dust storm, floating dust, blowing dust), the contribution of dust aerosol to absorption extinction is 60.6% on average; in the hinterland of desert in spring, dust aerosol is also the major contributor to the total aerosol light absorption, more than that of black carbon aerosol.  相似文献   

5.
Steel industries are a major contributor to aerosols in steel cities like Rourkela. We designed an air quality sampling program to characterize total suspended particulate (TSP) aerosol in urban areas of Rourkela and to identify their steel-related and other sources. Monitoring was carried out over 8 h, twice per week from January 2011 to December 2012. Metallic species of TSP aerosols were analyzed using an atomic absorption spectrophotometer; ionic species using the IS 3025 method; and carbonaceous species using a total organic carbon analyzer. Enrichment factor and Spearman's rank correlation analysis were carried out on compositional data. Significant seasonal variations were observed for TSP with totals in summer > spring > winter > monsoon. Low concentrations during monsoon reflected wet scavenging, while high concentrations during summer were related to wind turbulence and low humidity. The chemical mass balance model CMB8.2 was applied to apportion sources. Particles related to steel production, road dust, and soil were dominant in all seasons. A fertilizer plant was found to contribute particles in summer and monsoon. Wood combustion, diesel exhaust, and liquefied petroleum gas contributed significantly in spring and winter. While diesel exhaust, industrial manufacturing, solid waste burning, cement kilns, and construction were found to contribute to TSP at various times throughout the year.  相似文献   

6.
Potassium sodium niobate (KNN) powders were synthesized by a modified sol–gel method, using as starting chemicals potassium carbonate, sodium carbonate, and niobium hydroxide, and, as esterification and chelating agents, respectively, ethylene glycol (EG) and ethylene diamine tetraacetic acid (EDTA)/citrate. The effects of citric acid (CA), EG, and EDTA on the stability of the precursor sol were systemically investigated. The powders and gels were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry (TGA-DSC). The results indicated that a stable precursor sol was formed when n(CA):n(Mn+) = 3:1, n(EDTA):n(NH4OH) = 1:3.5, and n(CA):n(EG) = 1:2. The xerogel was calcined at 500–950 °C to prepare the KNN powder. Pure KNN perovskite phase with a cube-like structure was synthesized at 850 °C from the precursor sol for a K/Na molar ratio of 1.2. The formation mechanism of the KNN perovskite phase was also discussed.  相似文献   

7.
A circular water jet (Re = 1.6 × 105; We = 8.8 × 103) plunging at shallow angles (θ  12.5°) into a quiescent pool is investigated computationally and experimentally. A surprising finding from the work is that cavities, of the order of jet diameter, are formed periodically in the impact location, even though the impinging flow is smooth and completely devoid of such a periodicity. Computational prediction of these frequencies was compared with experimental findings, yielding excellent agreement. The region in the vicinity of the impact is characterized by strong churning due to splashing and formation of air cavities. Measured velocity profiles indicate a concentration of momentum beneath the free surface slightly beyond the impact location (X/Dj  14), with a subsequent shift towards the free surface further downstream of this point (X/Dj  30). This shift is due primarily to the action of buoyancy on the cavity/bubble population. Comparisons of the mean velocity profile between simulations and experiments are performed, yielding good agreement, with the exception of the relatively small churning flow region. Further downstream (X/Dj  40), the flow develops mostly due to diffusion and the location of peak velocity coincides with the free surface. In this region, the free surface acts as an adiabatic boundary and restricts momentum diffusion, causing the peak velocity to occur at the free surface.  相似文献   

8.
Atmospheric fine particles (PM2.5) were collected in this study with middle volume samplers in Fuzhou, China, during both normal days and haze days in summer (September 2007) and winter (January 2008). The concentrations, distributions, and sources of polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), and water soluble inorganic ions (WSIIs) were determinated. The results showed that the concentrations of PM2.5, PAHs, OC, EC, and WSIIs were in the orders of haze > normal and winter > summer. The dominant PAHs of PM2.5 in Fuzhou were Fluo, Pyr, Chr, BbF, BkF, BaP, BghiP, and IcdP, which represented about 80.0% of the total PAHs during different sampling periods. The BaPeq concentrations of ∑PAHs were 0.78, 0.99, 1.22, and 2.43 ng/m3 in summer normal, summer haze, winter normal, and winter haze, respectively. Secondary pollutants (SO42?, NO3?, NH4+, and OC) were the major chemical compositions of PM2.5, accounting for 69.0%, 55.1%, 63.4%, and 64.9% of PM2.5 mass in summer normal, summer haze, winter normal, and winter haze, respectively. Correspondingly, secondary organic carbon (SOC) in Fuzhou accounted for 20.1%, 48.6%, 24.5%, and 50.5% of OC. The average values of nitrogen oxidation ratio (NOR) and sulfur oxidation ratio (SOR) were higher in haze days (0.08 and 0.27) than in normal days (0.05 and 0.22). Higher OC/EC ratios were also found in haze days (5.0) than in normal days (3.3). Correlation analysis demonstrated that visibility had positive correlations with wind speed, and negative correlations with relative humidity and major air pollutants. Overall, the enrichments of PM2.5, OC, EC, SO42?, and NO3? promoted haze formation. Furthermore, the diagnostic ratios of IcdP/(IcdP + BghiP), IcdP/BghiP, OC/EC, and NO3?/SO42? indicated that vehicle exhaust and coal consumption were the main sources of pollutants in Fuzhou.  相似文献   

9.
Uniaxial compression stress–strain tests were carried out on three commercial amorphous polymers: polycarbonate (PC), polymethylmethacrylate (PMMA), and polyamideimide (PAI). The experiments were conducted under a wide range of temperatures (−40 °C to 180 °C) and strain rates (0.0001 s−1 up to 5000 s−1). A modified split-Hopkinson pressure bar was used for high strain rate tests. Temperature and strain rate greatly influence the mechanical response of the three polymers. In particular, the yield stress is found to increase with decreasing temperature and with increasing strain rate. The experimental data for the compressive yield stress were modeled for a wide range of strain rates and temperatures according to a new formulation of the cooperative model based on a strain rate/temperature superposition principle. The modeling results of the cooperative model provide evidence on the secondary transition by linking the yield behavior to the energy associated to the β mechanical loss peak. The effect of hydrostatic pressure is also addressed from a modeling perspective.  相似文献   

10.
This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m2s, heat fluxes from 2.3 kW/m2 to 250 kW/m2 at Tsat = 31 °C and ΔTsub from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research.  相似文献   

11.
The objective of this study was to determine the effect of temperature of spruce (Picea orientalis L.) logs during peeling process on surface roughness, adhesive wettability, colour variation of veneer, and shear strength of plywood made from these veneer sheets. Veneer samples were manufactured from the logs after they were kept for 3 h and 24 h to reach to average temperatures of 52 °C and 32 °C, respectively. A fine stylus method was used for surface roughness evaluation of the veneer produced from two types of the logs and it was found that the samples peeled from the logs with a temperature of 52 °C had significantly better roughness values than those of manufactured from the logs with 32 °C at a 95% confidence level. Wettability of veneer samples was determined with contact angle measurements according to the sessile drop method. Urea formaldehyde (UF) and phenol formaldehyde (PF) resin drops were used in contact angle measurements. Contact angles of PF resin drops on veneers were similar for each peeling temperature while the contact angles of UF glue resin on veneers produced from the logs with 32 °C were lower than those of produced from the logs with 52 °C. Small colour difference was measured (indicated by a low ΔE value) on veneer samples depending on the log temperature. The highest shear strength value was determined for the plywood manufactured from veneers obtained from the logs with 52 °C by using UF glue.  相似文献   

12.
Hierarchical sea-urchin-shaped manganese oxide microspheres were synthesized via a facile method based on the reaction between KMnO4 and MnSO4 in HNO3 solution at 50 °C. The average diameter of the microspheres is ∼850 nm. The microspheres consist of a core of diameter of ∼800 nm and nanorods of width ∼50 nm. The nanorods exist at the edge of the core. The Brunauer–Emmett–Teller surface area of the sea-urchin-shaped microspheres is 259.4 m2/g. A possible formation mechanism of the hierarchical sea-urchin-shaped microspheres is proposed. The temperature for 90% conversion of benzene (T90%) on the hierarchical urchin-shaped MnO2 microspheres is about 218 °C.  相似文献   

13.
An experimental study of the flow field in a two-dimensional wall jet has been conducted. All measurements were carried out using hot-wire anemometry. The experimental facility has a rectangular slot nozzle of high aspect ratio l/b = 100 (where l and b are the length and height slot, respectively). Mean velocities and Reynolds stresses were determined with three nozzle Reynolds numbers (Re = 1 × 104, 2 × 104 and 3 × 104) and four different inclination angles between the wall and the flow velocity at the nozzle (β = 0°, 10°, 20° and 30°). Results indicate that all wall jets are self-preserving in the developed region. Normal to the wall two regions can be identified: one similar to a plane free jet and the other similar to a boundary layer. Downstream the interaction between these two regions creates a mixed or third region. The logarithmic region increases with the distance from the nozzle and with the Reynolds number. For the inclined wall jet, the spreading rate expressed in terms of jet half-width or maximum velocity decay with respect to the streamwise distance, asymptotes to a linear law. The streamwise locations where the jet becomes self-similar are farther from the exit than in parallel wall jet. The slope of both half-width and maximum velocity decay in the developed region are affected by both wall jet inclination angle and nozzle exit Reynolds number.  相似文献   

14.
The mean wake of a surface-mounted finite-height square prism was studied experimentally in a low-speed wind tunnel to explore the combined effects of incidence angle (α) and aspect ratio (AR). Measurements of the mean wake velocity field were made with a seven-hole pressure probe for finite square prisms of AR = 9, 7, 5 and 3, at a Reynolds number of Re = 3.7 × 104, for incidence angles from α = 0° to 45°. The relative thickness of the boundary layer on the ground plane, compared to the prism width, was δ/D = 1.5. As the incidence angle increases from α = 0° to 15°, the mean recirculation zone shortens and the mean wake shifts in the direction opposite to that of the mean lift force. The downwash is also deflected to this side of the wake and the mean streamwise vortex structures in the upper part of the wake become strongly asymmetric. The shortest mean recirculation zone, and the greatest asymmetry in the mean wake, is found at the critical incidence angle of αcritical  15°. As the incidence angle increases from α = 15° to 45°, the mean recirculation zone lengthens and the mean streamwise vortex structures regain their symmetry. These vortices also elongate in the wall-normal direction and become contiguous with the horseshoe vortex trailing arms. The mean wake of the prism of AR = 3 has some differences, such as an absence of induced streamwise vorticity near the ground plane, which support its classification as lying below the critical aspect ratio for the present flow conditions.  相似文献   

15.
Heating of thin foil targets by an high power laser at intensities of 1017–1019 W/cm2 has been studied as a method for producing high temperature, high density samples to investigate X-ray opacity and equation of state. The targets were plastic (parylene-N) foils with a microdot made of a mixture of germanium and titanium buried at depth of 1.5 μm. The L-shell spectra from the germanium and the K-shell spectra from the titanium were taken using crystal spectrometers recording onto film and an ultra fast X-ray streak camera coupled to a conical focussing crystal with a time resolution of 1 ps. The conditions in the microdot were inferred by comparing the measured spectra to synthetic spectra produced by the time-dependent collisional–radiative (CR) models FLY and FLYCHK. The data were also compared to simulated spectra from a number of opacity codes assuming local thermodynamic equilibrium (LTE). Temperature and density gradients were taken into account in the comparisons. The sample conditions were inferred from the CR modelling using FLYCHK to be 800 ± 100 eV and 1.5 ± 0.5 g/cc. The best fit to the LTE models was at a temperature 20% lower than with the CR model. Though the sample departs from LTE significantly useful spectral comparisons can still be made. The results and comparisons are discussed along with improvements to the experimental technique to achieve conditions closer to LTE.  相似文献   

16.
This paper presents a numerical study of the conjugate heat transfer (natural convection, surface thermal radiation and conduction) in a square cavity with turbulent flow. The cavity has one vertical isothermal wall, two horizontal adiabatic walls and one vertical semitransparent wall with a selective coating applied to the inner side to control the solar radiation transmission. Later on the semitransparent wall is replaced with another one without the selective coating. The mathematical model for the turbulent flow in the cavity was solved using the finite volume method. The system had the following conditions: the uniform temperature in the isothermal wall was 21 °C, the external ambient temperature was fixed at 35 °C and on the semitransparent wall the direct normal solar irradiation of 750 W/m2 was considered constant. The Rayleigh number was varied in the range of 109 ? Ra ? 1012 by changing the lengths of the cavity from 0.70 m to 6.98 m, respectively. The results show that, even though the air temperature of the cavity with the solar control film coating semitransparent wall (case A) is higher compared with the one without solar film coating (case B), the total amount of heat going through the cavity is lower compared to the one going through the cavity without solar control film. The total amount of energy transferred to the air in cavity for the case A was 41.98% less than for the case B. A set of correlations for the Nusselt number was obtained for both cases considering the conjugate heat transfer.  相似文献   

17.
In this paper, interlaminar crack initiation and propagation under mode-I with static and fatigue loading of a composite material are experimentally assessed for different test temperatures. The material under study is made of a 3501-6 epoxy matrix reinforced with AS4 unidirectional carbon fibres, with a symmetric laminate configuration [0°]16/S. In the experimental programme, DCB specimens were tested under static and fatigue loading. Based on the results obtained from static tests, fatigue tests were programmed to analyse the mode-I fatigue behaviour, so the necessary number of cycles was calculated for initiation and propagation of the crack at the different temperatures. GN curves were determined under fatigue loading, N being the number of cycles at which delamination begins for a given energy release rate. GICmaxa, aN and da/dNa curves were also determined for different Gcr rates (90%, 85%, 75%, etc.) and different test temperatures: 90 °C, 50 °C, 20 °C, 0 °C, ?30 °C and ?60 °C.  相似文献   

18.
A rigorous reformulation of internal entropy production and the rate of entropy flow is developed for multi-component systems consisting of heterophases, interfaces and/or surfaces. The result is a well-posed moving boundary value problem describing the dynamics of curved interfaces and surfaces associated with voids and/or cracks that are intersected by grain boundaries. Extensive computer simulations are performed for void configuration evolution during intergranular motion. In particular we simulate evolution resulting from the action of capillary and electromigration forces in thin film metallic interconnects having a “bamboo” structure, characterized by grain boundaries aligned perpendicular to the free surface of the metallic film interconnects. Analysis of experimental data utilizing previously derived mean time to failure formulas gives consistent values for interface diffusion coefficients and enthalpies of voids. 3.0 × 10−6 exp(−0.62 eV/kT) m2 s−1 is the value obtained for voids that form in the interior of the aluminum interconnects without surface contamination. 6.5 × 10−6 exp(−0.84 eV/kT) m2 s−1 is obtained for those voids that nucleate either at triple junctions or at the grain boundary-technical surface intersections, where the chemical impurities may act as trap centers for hopping vacancies.  相似文献   

19.
Pressure drops in the flow through micro-orifices and capillaries were measured for silicone oils, aqueous solutions of polyethylene glycol (PEG), and surfactant aqueous solutions. The diameter of micro-orifices ranged from 5 μm to 400 μm. The corresponding length/diameter ratio was from 4 to 0.05 and capillary diameters were 105 μm and 450 μm. The following results were obtained: silicone oils of 10?6 m2/s and 10?5 m2/s in kinematic viscosity generated a reduction of pressure drop (RPD), that is, drag reduction, similar to the RPD of water and a glycerol/water mixture reported in the previous paper by the present authors. When RPD occurred, the pressure drop (PD) of silicone oils of 10?6 m2/s and 10?5 m2/s had nearly the same magnitude. Namely, the difference in viscosity did not influence RPD. A 103 ppm aqueous solution of PEG20000 provided almost the same PD as that of PEG8000 for the 400 μm to 15 μm orifices, but a greater PD than that of PEG8000 for the 10 μm to 5 μm orifices. A non-ionic surfactant and a cationic surfactant were highly effective in RPD compared with anionic surfactants: the non-ionic and cationic surfactant solutions had PD one order of magnitude lower than that of water under some flow conditions in the concentration range from 1 ppm to 104 ppm, but the anionic surfactant solutions did not generate RPD except in the case of the smallest orifice of 5 μm in diameter. The PD of the non-ionic surfactant solution showed a steep rise at a Reynolds number (Ret) for 400 μm to 15 μm orifices. The Ret provides the relationship Ret = K/D, where D is the orifice diameter, and K is a constant of 2 × 10?2 m for the 100–20 μm orifices irrespective of liquid concentration. Capillary flow experiment revealed that the PEG, non-ionic and cationic surfactant solutions generated RPD also in a laminar flow through the capillary of 105 μm in diameter, but not in the flow through the capillary of 450 μm in diameter. In order to clarify the cause of RPD, an additional experiment was carried out by changing the orifice material from metal to acrylic resin. The result gave a different appearance of RPD, suggesting that RPD is related to an interfacial phenomenon between the liquid and wall. The large RPDs found in the present experiment are very interesting from both academic and practical viewpoints.  相似文献   

20.
Fine particulate matter (PM2.5) samples were collected over two years in Xi’an, China to investigate the relationships between the aerosol composition and the light absorption efficiency of black carbon (BC). Real-time light attenuation of BC at 880 nm was measured with an aethalometer. The mass concentrations and elemental carbon (EC) contents of PM2.5 were obtained, and light attenuation cross-sections (σATN) of PM2.5 BC were derived. The mass of EC contributed ∼5% to PM2.5 on average. BC σATN exhibited pronounced seasonal variability with values averaging 18.6, 24.2, 16.4, and 26.0 m2/g for the spring, summer, autumn, and winter, respectively, while averaging 23.0 m2/g overall. σATN varied inversely with the ratios of EC/PM2.5, EC/[SO42−], and EC/[NO3]. This study of the variability in σATN illustrates the complexity of the interactions among the aerosol constituents in northern China and documents certain effects of the high EC, dust, sulfate and nitrate loadings on light attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号