首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Oxidative stress caused by the production of reactive oxygen species (ROS) plays a major role in inflammatory processes. We hypothesized that modulation of ROS via quercetin may protect against oxidative stress and inflammation. Thus, this study aimed to investigate the effects of quercetin on oxidative stress and inflammation in lung epithelial A549 cells. The lipopolysaccharide (LPS)-induced elevation of intracellular ROS levels was reduced after quercetin treatment, which also almost completely abolished the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) induced by LPS stimulation. In addition, quercetin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and reduced levels of inflammatory cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6, which had increased significantly after LPS exposure. Our data demonstrated that quercetin decreased ROS-induced oxidative stress and inflammation by suppressing NOX2 production.  相似文献   

2.
Osteoarthritis (OA) is a complex disease characterized by structural, functional, and metabolic deteriorations of the whole joint and periarticular tissues. In the current study, we aimed to investigate the possible effects of tempol on knee OA induced by the chemical chondrotoxic monosodium iodoacetate (MIA) which closely mimics both the pain and structural changes associated with human OA. Rats were administrated oral tempol (100 mg/kg) one week post-MIA injection (3 mg/50 μL saline) at the right knee joints for 21 consecutive days. Tempol improved motor performance and debilitated the MIA-related radiological and histological alterations. Moreover, it subsided the knee joint swelling. Tempol decreased the cartilage degradation-related biomarkers as matrix metalloproteinase-13, bone alkaline phosphatase (bone ALP), and fibulin-3. The superoxide dismutase mimetic effect of tempol was accompanied by decreased NADPH oxidase 4 (NOX4), inflammatory mediators, nuclear factor-kappa B (NF-κB), over-released transforming growth factor-β1 (TGF-β1). Tempol decreased the expression of chemokine (C-C motif) ligand 2 (CCL2). On the molecular level, tempol reduced the phosphorylated protein levels of p38 mitogen-activated protein kinase (MAPK), and small mother against decapentaplegic 3 homologs (SMAD3). These findings suggest the promising role of tempol in ameliorating MIA-induced knee OA in rats via collateral suppression of the catabolic signaling cascades including TGF-β1/SMAD3/NOX4, and NOX4/p38MAPK/NF-κB and therefore modulation of oxidative stress, catabolic inflammatory cascades, chondrocyte metabolic homeostasis.  相似文献   

3.
The Toll family of receptors senses microbial invasion and activates defense responses. Toll-like receptor 4 (TLR4) is a member of the Toll family that senses lipopolysaccharide (LPS), a principal membrane component from Gram-negative bacteria. LPS is known as an endotoxin that strongly activates immune cells such as macrophages and dendritic cells. LPS recognition by TLR4 requires an additional accessory molecule, MD-2. MD-2 is associated with the extracellular portion of TLR4, directly binds to LPS, and regulates subsequent LPS-induced TLR4 clustering. LPS recognition occurs on the cell surface. The subcellular distribution of TLR was shown to influence TLR responses. An endoplasmic reticulum (ER) chaperone, glycoprotein 96, is required for the stability of TLR4 and the formation of a TLR4/MD-2 complex in ER. MD-2 facilitates TLR4 glycosylation and its trafficking to the cell surface. Recently, another molecule, a protein associated with Toll-like receptor 4 (PRAT4A), was shown to play a critical role in cell surface expression of TLR4. These molecules control LPS responsiveness by regulating the subcellular distribution of TLR4.  相似文献   

4.
Toll样受体(Toll-like receptors,TLRs)是进化保守的天然免疫模式识别受体,能够识别外源的病原菌相关分子模式(Pathogen-associated molecular patterns,PAMPs)、内源的损害相关分子模式(Damage-associated molecular patterns,DAMPs)和异源物相关分子模式(Xenobiotic-associated molecular patterns),诱导炎症免疫反应。 其中,TLR4(Toll-like receptor 4)是目前研究最为广泛的Toll样受体之一,TLR4是脂多糖(lipopoiysaccharide,LPS)的主要受体,LPS激活的TLR4信号通路在炎症信号的传递中发挥着重要作用,而此信号转导需要通过LPS与TLR4及其附属蛋白髓样分化因子2(myeloid differentiation factor 2,MD-2)的相互作用来实现。 因此,TLR4/MD-2成为炎症反应和免疫调控最重要的研究热点。 本文综述靶向TLR4/MD-2的小分子激动剂和抑制剂的研究进展,以进一步理解TLR4小分子调节剂与其相互作用的复杂性,帮助靶向TLR4/MD-2的免疫调节剂药物发现。  相似文献   

5.
The present study evaluated the therapeutic potential of myricitrin (Myr), a glycosyloxyflavone extracted from Myrica esculenta bark, against diabetic nephropathy. Myr exhibited a significant hypoglycemic effect in high fat-fed and a single low-dose streptozotocin-induced type 2 diabetic (T2D) rats. Myr was found to improve glucose uptake by the skeletal muscle via activating IRS-1/PI3K/Akt/GLUT4 signaling in vitro and in vivo. Myr significantly attenuated high glucose (HG)-induced toxicity in NRK cells and in the kidneys of T2D rats. In this study, hyperglycemia caused nephrotoxicity via endorsing oxidative stress and inflammation resulting in the induction of apoptosis, fibrosis, and inflammatory damages. Myr was found to attenuate oxidative stress via scavenging/neutralizing oxidative radicals and improving endogenous redox defense through Nrf-2 activation in both in vitro and in vivo systems. Myr was also found to attenuate diabetes-triggered renal inflammation via suppressing NF-κB activation. Myr inhibited hyperglycemia-induced apoptosis and fibrosis in renal cells evidenced by the changes in the expressions of the apoptotic and fibrotic factors. The molecular docking predicted the interactions between Myr and different signal proteins. An in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) study predicted the drug-likeness character of Myr. Results suggested the possibility of Myr to be a potential therapeutic agent for diabetic nephropathy in the future.  相似文献   

6.
Type 1 diabetes mellitus is caused by the autoimmune destruction of β cells within the islets. In recent years, innate immunity has been proposed to play a key role in this process. High-mobility group box 1 (HMGB1), an inflammatory trigger in a number of autoimmune diseases, activates proinflammatory responses following its release from necrotic cells. Our aim was to determine the significance of HMGB1 in the natural history of diabetes in non-obese diabetic (NOD) mice. We observed that the rate of HMGB1 expression in the cytoplasm of islets was much greater in diabetic mice compared with non-diabetic mice. The majority of cells positively stained for toll-like receptor 4 (TLR4) were β cells; few α cells were stained for TLR4. Thus, we examined the effects of anti-TLR4 antibodies on HMGB1 cell surface binding, which confirmed that HMGB1 interacts with TLR4 in isolated islets. Expression changes in HMGB1 and TLR4 were detected throughout the course of diabetes. Our findings indicate that TLR4 is the main receptor on β cells and that HMGB1 may signal via TLR4 to selectively damage β cells rather than α cells during the development of type 1 diabetes mellitus.  相似文献   

7.
Type-2 diabetes mellitus (T2DM), the leading global health burden of this century majorly develops due to obesity and hyperglycemia-induced oxidative stress in skeletal muscles. Hence, developing novel drugs that ameliorate these pathological events is an immediate priority. The study was designed to analyze the possible role of Stevioside, a characteristic sugar from leaves of Stevia rebaudiana (Bertoni) on insulin signaling molecules in gastrocnemius muscle of obesity and hyperglycemia-induced T2DM rats. Adult male Wistar rats rendered diabetic by administration of high fat diet (HFD) and sucrose for 60 days were orally administered with SIT (20 mg/kg/day) for 45 days. Various parameters were estimated including fasting blood glucose (FBG), serum lipid profile, oxidative stress markers, antioxidant enzymes and expression of insulin signaling molecules in diabetic gastrocnemius muscle. Stevioside treatment improved glucose and insulin tolerances in diabetic rats and restored their elevated levels of FBG, serum insulin and lipid profile to normalcy. In diabetic gastrocnemius muscles, Setvioside normalized the altered levels of lipid peroxidase (LPO), hydrogen peroxide (H2O2) and hydroxyl radical (OH*), antioxidant enzymes (CAT, SOD, GPx and GSH) and molecules of insulin signaling including insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and Akt mRNA levels. Furthermore, Stevioside enhanced glucose uptake (GU) and oxidation in diabetic muscles by augmenting glucose transporter 4 (GLUT 4) synthesis very effectively in a similar way to metformin. Results of molecular docking analysis evidenced the higher binding affinity with IRS-1 and GLUT 4. Stevioside effectively inhibits oxidative stress and promotes glucose uptake in diabetic gastrocnemius muscles by activating IR/IRS-1/Akt/GLUT 4 pathway. The results of the in silico investigation matched those of the in vivo study. Hence, Stevioside could be considered as a promising phytomedicine to treat T2DM.  相似文献   

8.
A new series of monosaccharide-based glycolipids devoid of phosphate groups and with two lipid chains were rationally designed by varying the lipid chain lengths and saccharide structure of a α-GalCer-derived lead compound (CCL-34) that is a potent TLR4 agonist. The NF-κB activity of a 60-membered galactosyl serine-based synthetic library containing compounds with various lipid chain lengths was measured in a HEK293 cell line that stably expressed human TLR4, MD2, and CD14 (293-hTLR4/MD2-CD14). The results showed that the optimal carbon chain lengths for the lipid amine and fatty acid to activate TLR4 were 10-11 and 12, respectively. Evaluation of a 20-membered synthetic glycosyl serine-based lipid library containing compounds with various saccharide moieties and fixed lipid chain lengths revealed that the galactose moiety in CCL-34 could be replaced by glucose without loss of activity (CCL-34-S3 and CCL-34-S16). Changing the orientation of the anomeric glycosidic bond of CCL-34 resulted in a complete loss of activity (β-CCL34). Surprisingly, a change in configuration of the anomeric glycosidic bond in a glucosyl glycolipid is tolerable (CCL-34-S14). Another noteworthy observation is that the activity of a l-fucosyl derived glycolipid (CCL-34-S13) was comparable to that of CCL-34. In sum, this study determines the structural features that are crucial for an optimal TLR4-stimulating activity. It also provides several molecules with immunostimulating potential.  相似文献   

9.
10.
Dipeptidyl peptidase-4 (DPP-4) inhibitors are used for the treatment of type 2 diabetes mellitus (DM). Recent studies have shown that beyond their effect in lowing glucose, DPP-4 inhibitors mitigate DM-related microvascular complications, such as diabetic retinopathy. However, the mechanism by which pathological retinal neovascularization, a major clinical manifestation of diabetic retinopathy, is inhibited is unclear. This study sought to examine the effects of evogliptin, a potent DPP-4 inhibitor, on pathological retinal neovascularization in mice and elucidate the mechanism by which evogliptin inhibits angiogenesis mediated by vascular endothelial growth factor (VEGF), a key factor in the vascular pathogenesis of proliferative diabetic retinopathy (PDR). In a murine model of PDR, an intravitreal injection of evogliptin significantly suppressed aberrant retinal neovascularization. In human endothelial cells, evogliptin reduced VEGF-induced angiogenesis. Western blot analysis showed that evogliptin inhibited the phosphorylation of signaling molecules associated with VEGF-induced cell adhesion and migration. Moreover, evogliptin substantially inhibited the VEGF-induced activation of adenosine 5′-diphosphate ribosylation factor 6 (Arf6), a small guanosine 5′-triphosphatase (GTPase) that regulates VEGF receptor 2 signal transduction. Direct activation of Arf6 using a chemical inhibitor of Arf-directed GTPase-activating protein completely abrogated the inhibitory effect of evogliptin on VEGF-induced activation of the angiogenic signaling pathway, which suggests that evogliptin suppresses VEGF-induced angiogenesis by blocking Arf6 activation. Our results provide insights into the molecular mechanism of the direct inhibitory effect of the DPP-4 inhibitor evogliptin on pathological retinal neovascularization. In addition to its glucose-lowering effect, the antiangiogenic effect of evogliptin could also render it beneficial for individuals with PDR.Subject terms: Vascular diseases, Growth factor signalling  相似文献   

11.
Antler growth depends on the proliferation and differentiation of mesenchymal stem cells (MSCs), and this process may be adversely affected by oxidative stress. Melatonin (MLT) has antioxidant functions, but its role in Cervidae remains largely unknown. In this article, flow cytometry, reactive oxygen species (ROS) identification, qPCR, and other methods were used to investigate the protective mechanism of MLT in H2O2-induced oxidative stress of antler MSCs. The results showed that MLT significantly increases cell viability by relieving the oxidative stress of antler MSCs. MLT inhibits cell apoptosis by protecting mitochondrial function. We blocked the melatonin receptor with luzindole (Luz) and found that the receptor blockade significantly increases H2O2-induced hyperoxide levels and causes significant inhibition of mitochondrial function. MLT treatment activates the nuclear factor E2-related factor 2 (Nrf2) antioxidant signaling pathway, up-regulates the expression of NAD(P)H quinone oxidoreductase 1 (NQO1) and other genes and it could inhibit apoptosis. In contrast, the melatonin receptor blockade down-regulates the expression of Nrf2 pathway-related genes, but significantly up-regulates the expression of apoptotic genes. It was indicated that MLT activates the Nrf2 pathway through the melatonin receptor and alleviates H2O2-induced oxidative stress and apoptosis in antler MSCs. This study provides a theoretical basis for further studying the oxidative stress and antioxidant process of antler MSCs and, thereby, increasing antler yields.  相似文献   

12.
We developed a liquid chromatography electrospray ionisation multi-stage mass spectrometry (LC-ESI-MS/MS) approach based on precursor-ion scanning and evaluated it to characterize the covalent modifications of Cys34 human serum albumin (HSA) caused by oxidative stress and reactive carbonyl species (RCS) adduction. HSA was isolated and digested enzymatically to generate a suitable-length peptide (LQQCPF) containing the modified tag residue. The resulting LQQCPF peptides were identified by LC-ESI-MS/MS in precursor-ion scan mode and further characterized in product-ion scan mode. The product ions for precursor-ion scanning were selected by studying the MS/MS fragmentation of a series of LQQCPF derivatives containing Cys34 modified with different alpha,beta-unsaturated aldehydes and di and ketoaldehydes. We used a Boolean logic to enhance the specificity of the method: this reconstitutes a virtual current trace (vCT) showing the peaks in the three precursor-ion scans, marked by the same parent ion. The method was first evaluated to identify and characterize the Cys34 covalent adducts of HSA incubated with 4-hydroxy-hexenal, 4-hydroxy-trans-2-nonenal (HNE) and acrolein (ACR). Then we studied the Cys34 modification of human plasma incubated with mildly oxidized low-density lipoproteins (LDL), and the method easily identified the LQQCPF adducts with HNE and ACR. In other experiments, plasma was oxidized by 2,2'-azobis(2-amidinopropane) HCl (AAPH) or by Fe2+/H2O2. In both conditions, the sulfinic derivative of LQQCPF was identified and characterized, indicating that the method is suitable not only for studying RCS-modified albumin, but also to check the oxidative state of Cys34 as a marker of oxidative damage.  相似文献   

13.
Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin- 1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin- 1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress.  相似文献   

14.
The action mode of 4,4''-diaminodiphenylsulfone (DDS) is still under debate, although it has long been used in treatment of several dermatologic diseases including Hansen''s disease. In this study, we tested the effect of DDS as an antioxidant on paraquat-induced oxidative stress in non-phagocytic human diploid fibroblasts (HDFs). Overall, preincubation of HDFs with DDS prevented the oxidative stress and the resulting cytotoxic damages caused by paraquat in these cells. The specific effects of DDS in paraquat-treated HDFs are summarized as follows: a) reducing the expression of NADPH oxidase 4 (NOX4) by inhibiting paraquat-induced activation of PKC; b) inhibiting paraquat-induced decreases in mitochondrial complex protein levels as well as in membrane potentials; c) consequently, inhibiting the generation of cytosolic and mitochondrial superoxide anions. Taken together, these findings suggest that DDS would suppress the radical generation in non-phagocytic HDFs during oxidative stress, and that DDS might have the extended potential to be used further in prevention of other oxidative stress-related pathologies.  相似文献   

15.
16.
Primary cilia mediate the interactions between cells and external stresses. Thus, dysregulation of primary cilia is implicated in various ciliopathies, e.g., degeneration of the retina caused by dysregulation of the photoreceptor primary cilium. Particulate matter (PM) can cause epithelium injury and endothelial dysfunction by increasing oxidative stress and inflammatory responses. Previously, we showed that PM disrupts the formation of primary cilia in retinal pigment epithelium (RPE) cells. In the present study, we identified 2-isopropylmalic acid (2-IPMA) as a novel inducer of primary ciliogenesis from a metabolite library screening. Both ciliated cells and primary cilium length were increased in 2-IPMA-treated RPE cells. Notably, 2-IPMA strongly promoted primary ciliogenesis and restored PM2.5-induced dysgenesis of primary cilia in RPE cells. Both excessive reactive oxygen species (ROS) generation and activation of a stress kinase, JNK, by PM2.5 were reduced by 2-IPMA. Moreover, 2-IPMA inhibited proinflammatory cytokine production, i.e., IL-6 and TNF-α, induced by PM2.5 in RPE cells. Taken together, our data suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in RPE cells.  相似文献   

17.
Toll-like receptor 4 (TLR4) plays an important role in the regulation of the innate and adaptive immune response. Both agonists and antagonists of TLR4 are of considerable interest as drug leads for various disease indications. We herein report the rational design of two myeloid differentiation factor 2 (MD2)-derived macrocyclic peptides as TLR4 modulators, using the Rosetta Macromolecular Modeling software. The designed cyclic peptides, but not their linear counterparts, displayed synergistic activation of TLR signaling when co-administered with lipopolysaccharide (LPS). Although the understanding of the mechanism of action of these peptides remains elusive, these results underscore the utility of peptide cyclization for the discovery of biologically active agents, and also provide valuable tools for the investigation of TLR4 signaling.  相似文献   

18.
Endometritis is the inflammatory response of the endometrial lining of the uterus and is associated with low conception rates, early embryonic mortality, and prolonged inter-calving intervals, and thus poses huge economic losses to the dairy industry worldwide. Ginsenoside Rb1 (GnRb1) is a natural compound obtained from the roots of Panax ginseng, having several pharmacological and biological properties. However, the anti-inflammatory properties of GnRb1 in lipopolysaccharide (LPS)-challenged endometritis through the TLR4-mediated NF-κB signaling pathway has not yet been researched. This study was planned to evaluate the mechanisms of how GnRb1 rescues LPS-induced endometritis. In the present research, histopathological findings revealed that GnRb1 ameliorated LPS-triggered uterine injury. The ELISA and RT-qPCR assay findings indicated that GnRb1 suppressed the expression level of pro-inflammatory molecules (TNF-α, IL-1β and IL-6) and boosted the level of anti-inflammatory (IL-10) cytokine. Furthermore, the molecular study suggested that GnRb1 attenuated TLR4-mediated NF-κB signaling. The results demonstrated the therapeutic efficacy of GnRb1 in the mouse model of LPS-triggered endometritis via the inhibition of the TLR4-associated NF-κB pathway. Taken together, this study provides a baseline for the protective effect of GnRb1 to treat endometritis in both humans and animals.  相似文献   

19.
20.
Polyunsaturated phospholipids are known to be important with regard to the biological functions of essential fatty acids, for example, involving neural tissues such as the brain and retina. Here we have employed two complementary structural methods for the study of polyunsaturated bilayer lipids, viz. deuterium ((2)H) NMR spectroscopy and molecular dynamics (MD) computer simulations. Our research constitutes one of the first applications of all-atom MD simulations to polyunsaturated lipids containing docosahexaenoic acid (DHA; 22:6 cis-Delta(4,7,10,13,16,19)). Structural features of the highly unsaturated, mixed-chain phospholipid, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC), have been studied in the liquid-crystalline (L(alpha)) state and compared to the less unsaturated homolog, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The (2)H NMR spectra of polyunsaturated bilayers are dramatically different from those of less unsaturated phospholipid bilayers. We show how use of MD simulations can aid in interpreting the complex (2)H NMR spectra of polyunsaturated bilayers, in conjunction with electron density profiles determined from small-angle X-ray diffraction studies. This work clearly demonstrates preferred helical and angle-iron conformations of the polyunsaturated chains in liquid-crystalline bilayers, which favor chain extension while maintaining bilayer flexibility. The presence of relatively long, extended fatty acyl chains may be important for solvating the hydrophobic surfaces of integral membrane proteins, such as rhodopsin. In addition, the polyallylic DHA chains have a tendency to adopt back-bended (hairpin-like) structures, which increase the interfacial area per lipid. Finally, the material properties have been analyzed in terms of the response of the bilayer to mechanical stress. Simulated bilayers of phospholipids containing docosahexaenoic acid were less sensitive to the applied surface tension than were saturated phospholipids, possibly implying a decrease in membrane elasticity (area elastic modulus, bending rigidity). The above features distinguish DHA-containing lipids from saturated or monounsaturated lipids and may be important for their biological modes of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号