首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous LiFePO4/C microspheres consisting of LiFePO4 nanoparticles are successfully fabricated by an eco-friendly hydrothermal approach combined with high-temperature calcinations using cost-effective LiOH and Fe3+ salts as raw materials. In this strategy, pure mesoporous LiFePO4 microspheres, which are composed of LiFePO4 nanoparticles, were uniformly coated with carbon (∼1.5 nm). Benefiting from this unique architecture, these mesoporous LiFePO4/C microspheres can be closely packed, having high tap density. The initial discharge capacity of LiFePO4/C microspheres as positive-electrode materials for lithium-ion batteries could reach 165.3 mAh/g at 0.1 C rate, which is notably close to the theoretical capacity of LiFePO4 due to the large BET surface area, which provides for a large electrochemically available surface for the active material and electrolyte. The material also exhibits high rate capability (∼100 mAh/g at 8 C) and good cycling stability (capacity retention of 92.2% after 400 cycles at 8 C rate).  相似文献   

2.
LiFePO_4/C microspheres with different surface morphologies and porosities were prepared from different carbon sources.The effects of the surface morphology and pore structure of the microspheres on their electrochemical properties and electrode density were investigated.The electrochemical performance and electrode density depended on the morphology and pore structure of the LiFePO_4/C microspheres.Open-pore LiFePO_4/C microspheres with rough surfaces exhibited good adhesion with current collectors and a high electrode density(2.6g/cm~3).They also exhibited high performance in a half cell and full battery with a high volumetric energy density.  相似文献   

3.
We synthesized LiMnPO4/C with an ordered olivine structure by using a microwave-assisted polyol process in 2:15 (v/v) water–diethylene glycol mixed solvents at 130 °C for 30 min. We also studied how three surfactants—hexadecyltrimethylammonium bromide, polyvinylpyrrolidone k30 (PVPk30), and polyvinylpyrrolidone k90 (PVPk90)—affected the structure, morphology, and performance of the prepared samples, characterizing them by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge/discharge tests, and electrochemical impedance spectroscopy. All the samples prepared with or without surfactant had orthorhombic structures with the Pnmb space group. Surfactant molecules may have acted as crystal-face inhibitors to adjust the oriented growth, morphology, and particle size of LiMnPO4. The microwave effects could accelerate the reaction and nucleation rates of LiMnPO4 at a lower reaction temperature. The LiMnPO4/C sample prepared with PVPk30 exhibited a flaky structure coated with a carbon layer (∼2 nm thick), and it delivered a discharge capacity of 126 mAh/g with a capacity retention ratio of ∼99.9% after 50 cycles at 1C. Even at 5C, this sample still had a high discharge capacity of 110 mAh/g, demonstrating good rate performance and cycle performance. The improved performance of LiMnPO4 likely came from its nanoflake structure and the thin carbon layer coating its LiMnPO4 particles. Compared with the conventional polyol method, the microwave-assisted polyol method had a much lower reaction time.  相似文献   

4.
Hollow ordered porous carbon spheres (HOPCS) with a hierarchical structure were prepared by templating with hollow ordered mesoporous silica spheres (HOMSS). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that HOPCS exhibited a spherical hollow morphology. High-resolution TEM, small angle X-ray diffraction (SAXRD) and N2 sorption measurements confirmed that HOPCS inversely replicated the unconnected hexagonal-stacked pore structure of HOMSS, and possessed ordered porosity. HOPCS exhibited a higher storage capacity for Li+ ion battery (LIB) of 527.6 mA h/g, and good cycling performance. A large capacity loss during the first discharge–charge cycle was found attributed to the high content of micropores. The cycling performance was derived from the hierarchical structure.  相似文献   

5.
Lithium iron phosphate (LiFePO4)/lithium manganese phosphate (LiMnPO4)-positive material was successfully prepared through ball milling and high-temperature sintering using manganese acetate, lithium hydroxide, ammonium dihydrogen phosphate, and ferrous oxalate as raw materials. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, a constant current charge–discharge test, cyclic voltammetry, and electrochemical impedance spectroscopy. The effects of lithium iron phosphate coating were also discussed. Because of its special core–shell structure, the as-prepared LiMn0.7Fe0.3PO4–LiFePO4–C exhibits excellent electrochemical performance. The discharge capacity reached 136.6 mAh/g and the specific discharge energy reached 506.9 Wh/kg at a rate of 0.1 C.  相似文献   

6.
Hierarchical sea-urchin-shaped manganese oxide microspheres were synthesized via a facile method based on the reaction between KMnO4 and MnSO4 in HNO3 solution at 50 °C. The average diameter of the microspheres is ∼850 nm. The microspheres consist of a core of diameter of ∼800 nm and nanorods of width ∼50 nm. The nanorods exist at the edge of the core. The Brunauer–Emmett–Teller surface area of the sea-urchin-shaped microspheres is 259.4 m2/g. A possible formation mechanism of the hierarchical sea-urchin-shaped microspheres is proposed. The temperature for 90% conversion of benzene (T90%) on the hierarchical urchin-shaped MnO2 microspheres is about 218 °C.  相似文献   

7.
Nanostructured transition metal oxides are promising alternative anodes for lithium ion batteries. Li-ion storage performance is expected to improve if high packing density energy particles are available. Herein, Mn2O3 microspheres with a ca. 18 μm diameter and a tapped density of 1.33 g/cm3 were synthesized by a facile solvothermal–thermal coversion route. Spherical MnCO3 precursors were obtained through solvothermal treatment and they decomposed and converted into Mn2O3 microspheres at an annealing temperature of 700 °C. The Mn2O3 microspheres consisted of Mn2O3 nanoparticles with an average 40 nm diameter. These porous Mn2O3 microspheres allow good electrolyte penetration and provide an ion buffer reservoir to ensure a constant electrolyte supply. The Mn2O3 microspheres have reversible capacities of 590 and 320 mAh/g at 50 and 400 mA/g, respectively. We thus report an efficient route for the fabrication of energy particles for advanced energy storage.  相似文献   

8.
For the first time dry roller vibration milling at room temperature was used to prepare active carbon (AC) nano-particles and to modify MnO2 powder as electrode materials. In 30 min AC was milled to a mean particle size of 30-50 nm with increased crystallinity and higher specific surface area, predominantly mesoporous and with improved pore diameter distribution. Then, AC nano-particles were incorporated with MnO2 or bismuth-doped MnO2 nano-particles synthesized by sol-gel methods to prepare nano-composite electrode materials for studying their electrochemical performance. The AC nano-particles combined with 10 wt.% bismuth-doped MnO2 nano-particles were found to possess excellent electrochemical property with specific capacitance up to 308 F/g and without obvious attenuation with increasing current. Our method seems to ooen a new way to imorove AC based electrode materials used for clean energy such as suner capacitors.  相似文献   

9.
A commercial product of carbon nano-particles, Cabot MONACH 1300 pigment black (CMPB), was studied for basic structural information and electrochemical performance in neutral aqueous electrolytes, aiming at applications in supercapacitors. As confirmed by SEM and HRTEM, the CMPB had a hierarchical structure, containing basic 10 nm nano-spheres which combined into ca. 50 nm agglomerates which further aggregated into larger particles of micrometres. The capacitance of this commercial material was found to increase with decreasing the size of hydrous cation (Li+  Na+  K+), instead of the cation crystal radius (K+  Na+  Li+) when coupled with the same anion (Cl). In electrolytes with the same cation concentration (K+), changing the anion from the larger dianion (SO42−) to the smaller monoanion (Cl) also increased the capacitance at high potential scan rates (>50 mV/s). Increasing electrolyte concentration produced expected effect, including raising the electrode capacitance, but lowering the equivalent series resistance (ESR), charge transfer resistance (CTR), and the diffusion resistance. At higher temperatures, the CMPB exhibited slightly higher capacitance, which does not agree with the Gouy–Chapman theory on electric double layer (EDL). A hypothesis is proposed to account for the capacitance increase with temperature as a result of the CMPB opening up some micro-pores for more ions to access in response to the temperature increase.  相似文献   

10.
Layered Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials were synthesized via a solid-state reaction for Li-ion batteries, in which lithium hydroxide monohydrate, manganese dioxide, nickel monoxide, and cobalt monoxide were employed as metal precursors. To uncover the relationship between the structure and electrochemical properties of the materials, synthesis conditions such as calcination temperature and time as well as quenching methods were investigated. For the synthesized Li[Li0.2Mn0.56Ni0.16Co0.08]O2 materials, the metal components were found to be in the form of Mn4+, Ni2+, and Co3+, and their molar ratio was in good agreement with stoichiometric ratio of 0.56:0.16:0.08. Among them, the one synthesized at 800 °C for 12 h and subsequently quenched in air showed the best electrochemical performances, which had an initial discharge specific capacity and coulombic efficiency of 265.6 mAh/g and 84.0%, respectively, and when cycled at 0.5, 1, and 2 C, the corresponding discharge specific capacities were 237.3, 212.6, and 178.6 mAh/g, respectively. After recovered to 0.1 C rate, the discharge specific capacity became 259.5 mAh/g and the capacity loss was only 2.3% of the initial value at 0.1 C. This work suggests that the solid-state synthesis route is easy for preparing high performance Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials for Li-ion batteries.  相似文献   

11.
Sinter-locked microfibrous networks consisting of -3 vol.% of 8 p.m (dia.) nickel microfibers have been utilized to entrap -30vo1.% of 100-200 μm dia. porous AI203. ZnO and CaO were then highly dispersed onto the pore surface of entrapped A1203 by the incipient wetness impregnation method. Due to the unique combination of surface area, pore size/particle size, thermal conductivity, and void volume, the resulting microfibrous catalyst composites provided significant improvement of catalytic bed reactivity and utilization efficiency when used in methanol steam reforming. Roughly 260 mL/min of reformate, comprising 〉70% H2, 〈5% CO and trace CH4, with 〉97% methanol conversion, could be produced in a I cm3 bed volume of our novel microfihrous entrapped ZnO-CaO/Al2O3 catalyst composite at 470℃ with a high weight hourly space velocity (WHSV) of 15 h-1 using steam/methanol (1.3/1) mixture as feedstock. Compared to a packed bed of 100-200μm ZnO-CaO/Al2O3, our composite bed provided a doubling of the reactor throughput with a halving of catalyst usage.  相似文献   

12.
Graphene/hierarchy structure manganese dioxide (GN/MnO2) composites were synthesized using a simple microwave-hydrothermal method. The properties of the prepared composites were analyzed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The electrochemical performances of the composites were analyzed using cyclic voltammetry, electrochemical impedance spectrometry (EIS), and chronopotentiometry. The results showed that GN/MnO2 (10 wt% graphene) displayed a specific capacitance of 244 F/g at a current density of 100 mA/g. An excellent cyclic stability was obtained with a capacity retention of approximately 94.3% after 500 cycles in a 1 mol/L Li2SO4 solution. The improved electrochemical performance is attributed to the hierarchy structure of the manganese dioxide, which can enlarge the interface between the active materials and the electrolyte. The preparation route provides a new approach for hierarchy structure graphene composites; this work could be readily extended to the preparation of other graphene-based composites with different structures for use in energy storage devices.  相似文献   

13.
Wanli Jiao  Lei Zhang 《Particuology》2013,11(6):743-747
Flower-like SnO2 nanopowders prepared by a hydrothermal method were surface modified with palla- dium via impregnation. The crystal structure, morphology, and surface chemistry states of the samples were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), respectively. The gas sensing performances were also investigated. For a hydrothermal temperature of 220 ℃, flower-like SnO2 nanoparticles consist of nanorods with diameters of 40 nm and lengths of 100 nm. The XPS and XRD results reveal that palladium exists in the Pd0 chemical state but the crystal is too small to be detected. The 0.3 wt% Pd modified SnO2 sensor shows better sensi- tivity, up to 21, for 70 μL/L ethanol gas at an optimal working temperature of 250 ℃. The quick response time (3 s) and fast recovery time (-20 s) are the main characteristics of this sensor.  相似文献   

14.
CeO2 is an important porous material with a wide range of applications in the abatement of volatile organic compounds (VOCs). In this paper, we prepared a series of novel three-dimensional (3D) micro/nanostructured CeO2 materials via a solvothermal method. Organic acid-assisted synthesis and inorganic acid post-treatment were used to adjust the CeO2 microstructures. The size of the 3D micro/nanostructures could be controlled in the range from 180 nm to 1.5 μm and the surface morphology changed from rough to smooth with the use of different organic acids. The CeO2 synthesized with acetic acid featured a hierarchical porosity and showed good performance for toluene catalytic combustion: a T50 of 187 °C and a T90 of 195 °C. Moreover, the crystallite size, textural properties, and surface chemical states could be tuned by inorganic acid modification. After treatment with HNO3, the modified CeO2 materials exhibited improved catalytic activity, with a T50 of ∼175 °C and a T90 of ∼187 °C. We concluded that the toluene combustion activity is related to the porosity and the amount of surface active oxygen of the CeO2. Both these features can be tuned by the co-work of organic and inorganic acids.  相似文献   

15.
A homogeneous precipitation process based on urea hydrolysis reaction was exploited to synthesize BaMgAl10O17:Eu2+ phosphor. The process parameters, such as the dosage of urea, the calcination tem- peratures and the concentration of Eu2+, were refined in light of the characterization of the products. The experimental results revealed that pure and well-crystallized BaMgAl10O17:Eu2+ phosphor could be obtained at 1250℃, a much lower temperature than that for traditional solid-state reaction. The as-prepared phosphor particles were small in grain size, regular in morphology, and uniform in size distribution. Because of the high homogeneity of the process, the as-prepared phosphor exhibited stronger emission intensity and higher thermal stability than the sample prepared by solid-state reaction at 1600℃.  相似文献   

16.
Precursors with NiCO3·2Ni(OH)2·2H2O- and Fe2O3·nH2O-coated alumina, graphite and cenosphere were synthesized by precipitation using ferrous sulfate, nickel sulfate, ammonium bicarbonate, alumina, graphite and cenosphere as the main starting materials. Magnetic γ-FeNi-coated alumina, graphite and cenosphere core–shell structural microspheres were subsequently prepared by thermal reduction of the as-prepared precursors at 600 °C for 2 h. Precipitation parameters, e.g. concentration of ceramic micropowders (10 g/L), sulfate solution (0.2 mol/L), rate of adding reactants (3 mL/min) and pH value were optimized by a trial-and-error method. Powders of the precursors and the resulting coating of γ-FeNi with grain size below 40 nm on alumina, graphite and cenosphere microspheres were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The magnetic properties of the nanosize γ-FeNi-coated alumina, graphite and cenosphere microspheres were measured by vibrating sample magnetometer (VSM). The results show that the core–shell structural γ-FeNi-coated ceramic microspheres exhibited higher coercivity than pure γ-FeNi powders, indicating that these materials can be used for high-performance functional materials and devices.  相似文献   

17.
Little attention has thus far been paid to the potential effect of solution composition on the hydrothermal crystallization of calcium sulfate whiskers prepared from flue-gas desulfurization (FGD) gypsum. When purified FGD gypsum was used as raw material, the morphology and phase structure of the hydrothermal products grown in pure water, H2SO4–H2O, NaCl–H2O, and H2SO4–NaCl–H2O solutions as well as the solubility of purified FGD gypsum in these solutions were investigated. The results indicate that calcium sulfate whiskers grow favorably in the H2SO4–NaCl–H2O system. When prepared using 10–70 g NaCl/kg gypsum −0.01 M H2SO4–H2O at 130 °C for 60 min, the obtained calcium sulfate whiskers had diameters ranging from 3 to 5 μm and lengths from 200 to 600 μm, and their phase structure was calcium sulfate hemihydrate (HH). Opposing effects of sulfuric acid and sodium chloride on the solubility of the purified FGD gypsum were observed. With the co-presence of sulfuric acid and sodium chloride in the reaction solution, the concentrations of Ca2+ and SO42− can be kept relatively stable, which implies that the crystallization of the hydrothermal products can be controlled by changing the concentrations of sulfuric acid and sodium chloride.  相似文献   

18.
Flame spray pyrolysis (FSP) was utilized to synthesize Ce–Mn oxides in one step for catalytic oxidation of benzene. Cerium acetate and manganese acetate were used as precursors. The materials synthesized were characterized using X-ray diffraction (XRD), N2 adsorption, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and H2-temperature programmed reduction (H2-TPR) and their benzene catalytic oxidation behavior was evaluated. Mn ions were evidenced in multiple chemical states. Crystalline Ce–Mn oxides consist of particles with size <40 nm and specific surface areas (SSA) of 20–50 m2/g. Raman spectrums and H2-TPR results indicated the interaction between cerium and manganese oxides. Flame-made 12.5%-Ce–Mn oxide exhibited excellent catalytic activity at relatively low temperatures (T95 about 260 °C) compared to other Ce–Mn oxides with different cerium-to-manganese ratios. Redox mechanism and strong interaction conform to structure analysis that Ce–Mn strong interaction formed during the high temperature flame process and the results were used to explain catalytic oxidation of benzene.  相似文献   

19.
Nickel hydroxide, Ni(OH)2 is widely used in electrodes of nickel-based alkaline secondary batteries. Ultrathin hexagonal Ni(OH)2 nanosheets of space group P-3m1 were hydrothermally prepared at 200 °C for 10 h. Their diameter and thickness were 200–300 and 3–5 nm, respectively. Their formation was attributed to the oriented assembly of growing particles, which was assisted by surfactant molecules. The specific surface area of the Ni(OH)2 nanosheets was 8.66 m2/g. Their magnetization curve exhibited linear paramagnetic behavior across the entire measurement region.  相似文献   

20.
Pure phase star-shaped hydrogarnet Sr3Fe2(OH)12 assemblies were synthesized by a mild hydrothermal method (210 °C, 12 h), and the effects of the preparation conditions on the phase composition of the product were investigated. It was found that the impurity phases could be decreased or eliminated by increasing the molar ratio of Sr2+ to Fe3+, and that high temperatures favored the formation of Sr3Fe2(OH)12 and reduced the concentration of CO32–-containing byproducts. The thermal decomposition of the star-shaped Sr3Fe2(OH)12 assemblies was examined, and the results showed that the dehydration process at higher temperatures is accompanied by the formation of SrFeO3–δ. Above 655 °C, a solid state reaction between the SrFeO3–δ and Sr(OH)2 or SrCO3 results in the formation of Sr4Fe3O10–δ.The magnetic properties of the as-synthesized Sr3Fe2(OH)12 and of samples calcined at different temperatures were assessed. A sample calcined at 575 °C exhibited greatly enhanced ferromagnetic properties, with a remanent magnetization of 1.28 emu/g and a coercivity of 4522.1 Oe at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号