首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes – SOPPA(CCSD). Attention is given to the effect of the so-called W 4 term, which has not been included in previous SOPPA spin-spin coupling constant studies of these molecules. Large sets of Gaussian basis functions, optimized for the calculation of indirect nuclear spin-spin coupling constants, were used instead of the in general rather small basis sets used in previous studies. We find that for nearly all couplings the SOPPA(CCSD) method performs better than SOPPA. Received: 6 July 1998 / Accepted: 8 September 1998 / Published online: 23 November 1998  相似文献   

2.
It is shown that a linear correlation exists between nuclear shielding constants for nine small inorganic and organic molecules (N(2), CO, CO(2), NH(3), CH(4), C(2)H(2), C(2)H(4), C(2)H(6) and C(6)H(6)) calculated with 47 methods (42 DFT methods, RHF, MP2, SOPPA, SOPPA(CCSD), CCSD(T)) and the aug-cc-pVTZ-J basis set and corresponding complete basis set results, estimated from calculations with the family of polarization-consistent pcS-n basis sets. This implies that the remaining basis set error of the aug-cc-pVTZ-J basis set is very similar in DFT and CCSD(T) calculations. As the aug-cc-pVTZ-J basis set is significantly smaller, CCSD(T)/aug-cc-pVTZ-J calculations allow in combination with affordable DFT/pcS-n complete basis set calculations the prediction of nuclear shieldings at the CCSD(T) level of nearly similar accuracy as those, obtained by fitting results obtained from computationally demanding pcS-n calculations at the CCSD(T) limit. A significant saving of computational efforts can thus be achieved by scaling inexpensive CCSD(T)/aug-cc-pVTZ-J calculations of nuclear isotropic shieldings with affordable DFT complete basis set limit corrections.  相似文献   

3.
Carbon-carbon and carbon-hydrogen spin-spin coupling constants were calculated in the series of the first six monocycloalkanes using SOPPA and SOPPA(CCSD) methods, and very good agreement with the available experimental data was achieved, with the latter method showing slightly better results in most cases, at least in those involving calculations of J(C,C). Benchmark calculations of all possible 21 coupling constants J(C,C), J(C,H) and J(H,H) in chair cyclohexane revealed the importance of using the appropriate level of theory and adequate quality of the basis sets. Many unknown couplings in this series were predicted with high confidence and several interesting structural trends (hybridization effects, multipath coupling transmission mechanisms, hyperconjugative interactions) were elucidated and are discussed based on the present calculations of spin-spin couplings.  相似文献   

4.
The performance of more than 40 density functionals in predicting indirect spin-spin coupling constants (SSCCs) in the Kohn-Sham basis set limit was tested. For comparison, similar calculations were performed using the RHF, SOPPA, SOPPA(CC2), and SOPPA(CCSD) methods, and the results were estimated toward the complete basis set (CBS) limit. The SSCCs of nine small molecules (N(2), CO, CO(2), NH(3), CH(4), C(2)H(2), C(2)H(4), C(2)H(6), and C(6)H(6)) were calculated using the dedicated Jensen pcJ-n polarization-consistent basis sets and used for the CBS limit estimations within the Kohn-Sham limit. These CBS results were compared with calculations using the aug-cc-pVTZ-J basis set. Among the 41 studied DFT methods, the tHCTHhyb, HSEh1PBE, HSE2PBE, wB97XD, wB97, and wB97X functionals reproduced accurately the experimental (1)J(XH) SSCCs and (3)J(HH60) and (2)J(HH(gem)) in ethane. Similarly, the functionals HSEh1PBE, HSE2PBE, wB97XD, wB97, and wB97X predicted accurately (1)J(CC), and B98, B97-1, B97-2, PBE1PBE, B1LYP, and O3LYP provided accurate (1)J(CO) results in the CO molecule. A very good performance for the calculation of the SSCCs based on the use of the relatively small basis set aug-cc-pVTZ-J was observed.  相似文献   

5.
Benchmark calculations of geminal and vicinal 29Si–1H spin–spin coupling constants across double bond in three reference alkenylsilanes have been carried out at both DFT and SOPPA levels in comparison with experiment. At the former, four density functionals, B3LYP, B3PW91, PBE0 and KT3, were tested in combination with five representative basis sets. At the latter, three main SOPPA‐based methods, SOPPA, SOPPA(CC2) and SOPPA(CCSD), were examined in combination with the same series of basis sets. On the whole, the wavefunction methods showed much better results as compared to DFT, with the most efficient combination of SOPPA/cc‐pVTZ‐su2 characterized by a mean absolute error of only 0.4 Hz calculated for a set of nine coupling constants in three compounds with a sample span of around 40 Hz. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The experimental spin–spin coupling constants (SSCCs) for 1,3‐ and 1,4‐difluorobenzene have been determined anew, and found to be consistent with previously determined values. SSCCs for 1,2‐, 1,3‐, and 1,4‐difluorobenzene have been analyzed by comparing them with the coupling constants computed using the second‐order polarization propagator approximation (SOPPA) and the equation‐of‐motion coupled cluster singles and doubles method (EOM‐CCSD). Eighty experimental values have been analyzed using SOPPA calculations, and a subset of 40 values using both SOPPA and EOM‐CCSD approaches. One‐bond coupling constants 1J(C? C) and 1J(C? F) are better described by EOM‐CCSD, whereas one‐bond 1J(C? H) values are better described by SOPPA. An empirical equation is presented which allows for the prediction of unknown coupling constants from computed SOPPA values. A similar approach may prove useful for predicting coupling constants in larger systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Geminal functions based on Slater-type correlation factors and fixed expansion coefficients, determined by cusp conditions, have in recent years been forwarded as an efficient and numerically stable method for introducing explicit electron correlation into coupled-cluster theory. In this work, we analyze the equations of explicitly correlated coupled-cluster singles and doubles (CCSD-F12) theory and introduce an ordering scheme based on perturbation theory which can be used to characterize and understand the various approximations found in the literature. Numerical results for a test set of 29 molecules support our analysis and give additional insight. In particular, our results help rationalize the success of the CCSD(F12) approximation which is based on a very systematic cancellation of the neglected, otherwise individually large third-order geminal-geminal coupling terms. Further approximations to CCSD(F12) can be introduced without sacrificing the accuracy if the entire set of third-order coupling terms between the conventional doubles cluster amplitudes and the geminal doubles amplitudes is retained, leading to the recently proposed CCSD[F12] and CCSD(F12(?)) models, which have negligible overhead compared to conventional CCSD calculations. Particularly, the importance of the ring-term type contribution is pointed out which may be used to improve on other existing approximations such as CCSD-F12b. For small basis sets, it might be advantageous to keep certain higher-order terms leading to CCSD-F12(?), which, for the case of the SP ansatz, merely involves a noniterative correction to CCSD(F12(?)).  相似文献   

9.
A new hierarchy of augmented basis sets optimized for the calculation of molecular properties such as indirect spin-spin coupling constants is presented. Based on the Dunning hierarchy of cc-pVXZ (X = D, T, Q, and 5) basis sets augmentation functions with tight exponents have been optimized for coupled-cluster calculations of indirect spin-spin coupling constants. The optimal exponents for these tight functions have been obtained by optimizing the sum of the absolute values of all contributions to the coupling constant. On the basis of a series of test cases (CO, HF, N(2), F(2), H(2)O, NH(3), and CH(4)) we propose a set of tight s, p, and d functions to be added to the uncontracted Dunning basis sets, and, subsequently, to recontract. The resulting ccJ-pVXZ (X = D, T, Q, and 5) basis sets demonstrate excellent cost efficiency in benchmark calculations. These new basis sets should generally be applicable for the calculation of spin-spin coupling constants and other properties that have a strong dependence on powers of 1r or even contain a delta distribution for correlated ab initio methods.  相似文献   

10.
Benchmark calculations of (19)F nuclear magnetic shielding constants are presented for a set of 28 molecules. Near-quantitative accuracy (ca. 2 ppm deviation from experiment) is achieved if (1) electron correlation is adequately treated by employing the coupled-cluster singles and doubles (CCSD) model augmented by a perturbative correction for triple excitations [CCSD(T)], (2) large (uncontracted) basis sets are used, (3) gauge-including atomic orbitals are used to ensure gauge-origin independence, (4) calculations are performed at accurate equilibrium geometries [obtained from CCSD(T)/cc-pVTZ calculations correlating all electrons], and (5) vibrational averaging and temperature corrections via second-order vibrational perturbation theory (VPT2) are included. For the CCSD(T)/13s9p4d3f calculations corrected for vibrational effects, mean and standard deviation from experiment are -1.9 and 1.6 ppm, respectively. Less elaborate theoretical treatments result in larger errors. Consideration of relative shifts can reduce the mean deviation (through an appropriately chosen reference compound), but does not change the standard deviation. Density-functional theory calculations of absolute and relative (19)F nuclear magnetic shielding constants are found to be, at best, as accurate as the corresponding Hartree-Fock self-consistent-field calculations and are not improved by consideration of vibrational effects. Molecular systems containing fluorine-oxygen, fluorine-nitrogen, and fluorine-fluorine bonds are found to be more challenging than the other investigated molecules for the considered theoretical methods.  相似文献   

11.
Interesting insight into the electronic molecular structure changes associated with substituent effects on the Fermi contact (FC) and paramagnetic spin-orbit (PSO) terms of (1)J(CF) NMR coupling constants (SSCCs) in o-X-, m-X-, and p-X-fluorobenzenes (X = NH(2); NO(2)) is presented. The formulation of this approach is based on the influence of different conjugative and hyperconjugative interactions on a second-order property, which can be qualitatively predicted if it is known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals, which define some experimental trends for (1)J(CF) spin-spin coupling constants. In addition, DFT hybrid functionals were used, and a similar degree of confidence to compute the (1)J(CF) with those observed for the SOPPA(CCSD) method was obtained. The (1)J(CF) SSCCs for ezetimibe, a commercially fluorinated drug used to reduce cholesterol levels, were measured and DFT-calculated, and the qualitative approach quoted above was applied. As a byproduct, a possible method to determine experimentally a significant PSO contribution to (1)J(CF) SSCCs is discussed.  相似文献   

12.
We have proposed a simple strategy for splitting the virtual orbitals with a large basis set into two subgroups (active and inactive) by taking a smaller basis set as an auxiliary basis set. With the split virtual orbitals (SVOs), triple or higher excitations can be partitioned into active and inactive subgroups (according to the number of active virtual orbitals involved), which can be treated with different electron correlation methods. In this work, the coupled cluster (CC) singles, doubles, and a hybrid treatment of connected triples based on the SVO [denoted as SVO-CCSD(T)-h], has been implemented. The present approach has been applied to study the bond breaking potential energy surfaces in three molecules (HF, F(2), and N(2)), and the equilibrium properties in a number of open-shell diatomic molecules. For all systems under study, the SVO-CCSD(T)-h method based on the unrestricted Hartree-Fock (UHF) reference is an excellent approximation to the corresponding CCSDT (CC singles, doubles, and triples), and much better than the UHF-based CCSD(T) (CC singles, doubles, and perturbative triples). On the other hand, the SVO-CCSD(T)-h method based on the restricted HF (RHF) reference can also provide considerable improvement over the RHF-based CCSD(T).  相似文献   

13.
The second-rank tensor character of the paramagnetic spin-orbit and spin-dipolar contributions to nuclear spin-spin coupling constants is usually ignored when NMR measurements are carried out in the isotropic phase. However, in this study it is shown that isotropic (2)J(FF) couplings strongly depend on the relative orientation of the C-F bonds containing the coupling nuclei and the eigenvectors of such tensors. Predictions about such effect are obtained using a qualitative approach based on the polarization propagator formalism at the RPA, and results are corroborated performing high-level ab initio spin-spin coupling calculations at the SOPPA(CCSD)/EPR-III//MP2/EPR-III level in a model system. It is highlighted that no calculations at the RPA level were carried out in this work. The quite promising results reported in this paper suggest that similar properties are expected to hold for the second-rank nuclear magnetic shielding tensor.  相似文献   

14.
The leading cause of error in standard coupled cluster theory calculations of thermodynamic properties such as atomization energies and heats of formation originates with the truncation of the one-particle basis set expansion. Unfortunately, the use of finite basis sets is currently a computational necessity. Even with basis sets of quadruple zeta quality, errors can easily exceed 8 kcal/mol in small molecules, rendering the results of little practical use. Attempts to address this serious problem have led to a wide variety of proposals for simple complete basis set extrapolation formulas that exploit the regularity in the correlation consistent sequence of basis sets. This study explores the effectiveness of six formulas for reproducing the complete basis set limit. The W4 approach was also examined, although in lesser detail. Reference atomization energies were obtained from standard coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) calculations involving basis sets of 6ζ or better quality for a collection of 141 molecules. In addition, a subset of 51 atomization energies was treated with explicitly correlated CCSD(T)-F12b calculations and very large basis sets. Of the formulas considered, all proved reliable at reducing the one-particle expansion error. Even the least effective formulas cut the error in the raw values by more than half, a feat requiring a much larger basis set without the aid of extrapolation. The most effective formulas cut the mean absolute deviation by a further factor of two. Careful examination of the complete body of statistics failed to reveal a single choice that out performed the others for all basis set combinations and all classes of molecules.  相似文献   

15.
The dependence of 14N quadrupole coupling constants calculated using coupled cluster theory on the level of approximation is examined for a series of small molecules. For HCN, HNC, CH3CN, and CH3NC, we use the coupled cluster singles‐and‐doubles with a noniterative perturbative triples correction—CCSD(T)—approach, and we analyze the basis set dependence of the results. For aziridine, diazirine, and cyclopropyl cyanide, we use the CCSD(T) approach, but smaller basis sets, and for the largest studied molecules—quinuclidine and hexamine—we present CCSD results. The differences between computed and experimental values for the best basis sets used are ≈ 5% at the CCSD level and decrease noticeably at the CCSD(T) level. The ‐ N≡C bonds are an exception—in this case the quadrupole coupling constants are very small, hence the differences between theory and experiment become larger (up to 9%). We also consider the performance of density functional theory, comparing the results for different density functionals with the coupled cluster values of the same constants. Most of the functionals provide results systematically improved with respect to the Hartree–Fock values, with 14N coupling constants in ‐ N≡C bonds being again an exception. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
We have optimized the lowest energy structures and calculated interaction energies for the CO(2)-Ar, CO(2)-N(2), CO(2)-CO, CO(2)-H(2)O, and CO(2)-NH(3) dimers with the recently developed explicitly correlated coupled cluster singles doubles and perturbative triples [CCSD(T)]-F12 methods and the associated VXZ-F12 (where X = D,T,Q) basis sets. For a given cardinal number, we find that results obtained with the CCSD(T)-F12 methods are much closer to the CCSD(T) complete basis set limit than the conventional CCSD(T) results. The relatively modest increase in the computational cost between explicit and conventional CCSD(T) is more than compensated for by the impressive accuracy of the CCSD(T)-F12 method. We recommend use of the CCSD(T)-F12 methods in combination with the VXZ-F12 basis sets for the accurate determination of equilibrium geometries and interaction energies of weakly bound electron donor acceptor complexes.  相似文献   

17.
The explicitly-correlated coupled-cluster singles and doubles with perturbative triples method (CCSD(T)-F12) is implemented using the cusp conditions. Numerical tests for a set of 16 molecules have shown agreement of correlation energies within 1 mE(h) between the cusp-condition and fully-optimized CCSD(T)-F12 methods. Benchmark calculations on 13 chemical reactions with the cusp-condition CCSD(T)-F12 method reproduce experimental enthalpies within 2 kJ mol(-1). It is also shown that regular unitary-invariant ansatz cannot exactly satisfy singlet and triplet cusp conditions in open-shell situations. We present an extended ansatz which can handle both conditions exactly.  相似文献   

18.
Based on the coupled-cluster singles, doubles, and a hybrid treatment of triples (CCSD(T)-h) method developed by us [J. Shen, E. Xu, Z. Kou, and S. Li, J. Chem. Phys. 132, 114115 (2010); and ibid. 133, 234106 (2010); and ibid. 134, 044134 (2011)], we developed and implemented a new hybrid coupled cluster (CC) method, named CCSD(T)q-h, by combining CC singles and doubles, and active triples and quadruples (CCSDtq) with CCSD(T) to deal with the electronic structures of molecules with significant multireference character. These two hybrid CC methods can be solved with non-canonical and canonical MOs. With canonical MOs, the CCSD(T)-like equations in these two methods can be solved directly without iteration so that the storage of all triple excitation amplitudes can be avoided. A practical procedure to divide canonical MOs into active and inactive subsets is proposed. Numerical calculations demonstrated that CCSD(T)-h with canonical MOs can well reproduce the corresponding results obtained with non-canonical MOs. For three atom exchange reactions, we found that CCSD(T)-h can offer a significant improvement over the popular CCSD(T) method in describing the reaction barriers. For the bond-breaking processes in F(2) and H(2)O, our calculations demonstrated that CCSD(T)q-h is a good approximation to CCSDTQ over the entire bond dissociation processes.  相似文献   

19.
Zero-point vibrational contributions to indirect spin-spin coupling constants for N2, CO, HF, H2O, C2H2, and CH4 are calculated via explicitly anharmonic approaches. Thermal averages of indirect spin-spin coupling constants are calculated for the same set of molecules and for C2X4, X = H, F, Cl. Potential energy surfaces have been calculated on a grid of points and analytic representations have been obtained by a linear least-squares fit in a direct product polynomial basis. Property surfaces have been represented by a fourth-order Taylor expansion around the equilibrium geometry. The electronic structure calculations employ density functional theory, and vibrational contributions to indirect spin-spin coupling constants are calculated employing vibrational self-consistent-field and vibrational configuration-interaction methods. The performance of vibrational perturbation theory and various approximate variational calculations are discussed. Thermal averages are computed by state-specific and virtual vibrational self-consistent-field methods.  相似文献   

20.
Ab initio equation of motion coupled cluster singles and doubles (EOM-CCSD) and second-order polarization propagator approximation (SOPPA) calculations have been performed to evaluate spin-spin coupling constants for FCCF (difluoroethyne). The computed EOM-CCSD value of (3)J(F-F) obtained at the experimental geometry of this molecule supports the previously reported experimental value of 2.1 Hz, thereby resolving an apparent discrepancy between theory and experiment. This coupling constant exhibits a strong dependence on the C-C and C-F distances, and its small positive value results from a sensitive balance of paramagnetic spin-orbit (PSO) and spin-dipole (SD) terms. The three other unique FCCF coupling constants (1)J(C-C), (1)J(C-F), and (2)J(C-F) have also been reported and compared with experimental data. While (1)J(C-F) is in agreement with experiment, the computed value of (2)J(C-F) is larger than our estimate of the experimental coupling constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号