首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10–50 N), of sliding speeds (1–10 mm/s) and frequencies (100–2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.  相似文献   

2.
In this paper the natural frequencies and the associated mode shapes of in-plane free vibration of a single-crystal silicon ring are analyzed. It is found that the Si(1 1 1) ring is two-dimensionally isotropic in the (1 1 1) plane for elastic constants but three-dimensionally anisotropic, while the Si(1 0 0) ring is fully anisotropic. Hamilton’s principle is used to derive the equations of vibration, which is a set of partial differential equations with coefficients being periodic in polar variable. Expressing the radial and tangential displacements in sinusoidal form with non-predetermined amplitudes, and through the integration with respect to the circumferential variable, the original governing equations in partial differential form can be converted into the amplitude equations in ordinary differential form. The exact expressions for frequencies and mode shapes are obtained. It is found that for Si(1 0 0) rings the frequencies of a pair of modes, which are equal for an isotropic ring, split due to the anisotropic effect only for the second in-plane vibration mode. The phenomena of frequency splitting and degenerate modes can be proved either based on the conservation of averaged mechanical energy or by the concept of crystallographic symmetry groups. When the single-crystal silicon is replaced by the polycrystalline silicon, which is isotropic in elastic constants, the derived equations for frequencies correctly predict the vanishing of the phenomenon of frequency splitting.  相似文献   

3.
In this work, a new method is proposed to determine the two-phase flow regime based on the capacitance trace of the flow. The experimental data set contains 123 capacitance traces measured for a horizontal tube with an inner diameter of 8 mm. The tested refrigerant is R134a. The mass flux is varied between 200 and 500 kg/m2 s and the vapour quality x is varied between 0 and 1. For each capacitance signal the wavelet variance is estimated based on the maximum overlap wavelet transform of the signal. The used wavelet function is a D8 wavelet of the Daubechies family. A feature space is generated based on the wavelet variance values associated with frequencies below 100 Hz. Principal component analysis and linear discriminant analysis are subsequently applied to this raw feature space, after which the Fuzzy c-means clustering algorithm is used to divide the feature space into clusters corresponding to different flow regimes. The resulting flow regime assignment shows a good agreement with a visual classification of the data set based on flow visualisations. Finally, the classification was performed based on variable training data to show the robustness of the method.  相似文献   

4.
Temperature fluctuations occur due to thermal mixing of hot and cold streams in the T-junctions of the piping system in nuclear power plants, which may cause thermal fatigue of piping system. In this paper, three-dimensional, unsteady numerical simulations of coolant temperature fluctuations at a mixing T-junction of equal diameter pipes were performed using the large eddy simulation (LES) turbulent model. The experiments used in this paper to benchmark the simulations were performed by Hitachi Ltd. The calculated normalized mean temperatures and fluctuating temperatures are in good agreement with the measurements. The influence of the time-step ranging from 100 Hz to 1000 Hz on the numerical simulation results was explored. The simulation results indicate that all the results with different frequencies agree well with the experimental data. Finally, the attenuation of fluctuation of fluid temperature was also investigated. It is found that, drastic fluctuation occurs within the range of less than L/D = 4.0; the fluctuation of fluid temperature does not always attenuate from the pipe center to the wall due to the continuous generation of vortexes. At the top wall, the position of L/D = 1.5 has a minimum normalized mean temperature and a peak value of root-mean square temperature, whereas at the bottom wall, the position having the same characteristics is L/D = 2.0.  相似文献   

5.
An algorithm is proposed to model, predict and control vortex shedding behind a circular cylindrical configuration. The main ingredients of the algorithm include multiple-feedback sensors, actuators (with zero net mass injection) and a control strategy. Along with the mass and momentum conservation equations, a control equation is implemented to enable the desired flow control goals. A number of sensors are chosen in the downstream of the body to report the state of the flow. The role of externally controllable actuators on the fluid flow patterns past a circular configuration is assessed. To enable, zero net mass injection, two simple rotary type mechanical actuators are located at 120°, right behind the main cylinder. The popular finite volume based SIMPLE scheme is employed for the numerical calculations. As a precursor, the scheme simulates flow past an isolated cylinder, which is validated over a moderate range of Reynolds numbers. The design parameters of interest such as Strouhal number, drag and lift coefficients etc are used for the purpose of validation. The simulated flow fields are compared against the flow visualization study, which clearly demonstrates the efficacy of the actuators at discrete levels of rotation. The basic character of the flow is completely modified at Uc/U = 2.0 and Re = 100, where a complete suppression of vortex shedding is observed. This is tantamount to complete control of all the global instability modes. Fictitious tracer particles are released to visualize the vortex structures in the form of streaklines. The results clearly demonstrate the effectiveness of a rather simple active control algorithm in suppressing the vortex structures. All the relevant fluid flow features of the bluff-body fluid mechanics under the influence of actuators are studied in the sub-critical Reynolds number range of Re = 100–300.  相似文献   

6.
Spatial and temporal variations of channel wall temperature during flow boiling microchannel flows using infrared thermography are presented and analyzed. In particular, the top channel wall temperature in a branching microchannel silicon heat sink is measured non-intrusively. Using this technique, time-averaged temperature measurements, with a spatial resolution of 10 μm, are presented over an 18 mm × 18 mm area of the heat sink. Also presented, within a specific sub-region of the heat sink, are intensity maps that are recorded at a rate of 120 frames per second. Time series data at selected point locations in this sub-region are analyzed for their frequency content, and dominant temperature fluctuations are extracted using proper orthogonal decomposition.Results at low-vapor-quality boiling condition indicate that temperatures can be determined from recorded radiation intensities with a temperature uncertainty varying from 0.9 °C at 25 °C to 1.0 °C at 125 °C. The time series data indicate periodic wall temperature fluctuations of approximately 2 °C that are attributed to the passage of vapor slugs. A dominant band of frequencies around 2–4 Hz is suggested by the frequency analysis. Proper orthogonal decomposition results indicate that first six orthogonal modes account for approximately 90% of the variance in temperature. The first mode reconstruction accounts for temporal variations in the dataset in the sub-region analyzed; however the magnitude of fluctuations and spatial variations in temperature are not accurately captured. A reconstruction using the first 25 modes is considered sufficient to capture both the temporal and spatial variations in the data.  相似文献   

7.
Results showing the dynamic response of a vertical long flexible cylinder vibrating at low mode numbers are presented in this paper. The model had an external diameter of 16 mm and a total length of 1.5 m giving an aspect ratio of about 94, with Reynolds numbers between 1200 and 12 000. Only the lower 40% of its length was exposed to the water current in the flume and applied top tensions varied from 15 to 110 N giving fundamental natural frequencies in the range from 3.0 to 7.1 Hz. Reduced velocities based on the fundamental natural frequency up to 16 were reached. The mass ratio was 1.8 and the combined mass–damping parameter about 0.05. Cross-flow and in-line amplitudes, xy trajectories and phase synchronisation, dominant frequencies and modal amplitudes are reported. Cross-flow amplitudes up to 0.7 diameters and in-line amplitudes over 0.2 were observed with dominant frequencies given by a Strouhal number of 0.16.  相似文献   

8.
Flow control using zero-net-mass-flow jets in an S-shaped diffusing duct was investigated. Experiments were conducted in a channel flow facility at a Reynolds number, Re = 4.1 × 104 with particle image velocimetry measurements in the symmetry plane of the duct. In the natural configuration, separation of the boundary layer occurs in a region of the duct with an high degree of curvature. A stability analysis of the wall normal base flow at the location of the applied control is presented and estimates the most effective frequency of the actuator. Time-averaged velocity fields show total reattachment of the boundary layer using active flow control.  相似文献   

9.
The flow field over a low aspect ratio (AR) circular pillar (L/D = 1.5) in a microchannel was studied experimentally. Microparticle image velocimetry (μPIV) was employed to quantify flow parameters such as flow field, spanwise vorticity, and turbulent kinetic energy (TKE) in the microchannel. Flow regimes of cylinder-diameter-based Reynolds number at 100  ReD  700 (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated at the microscale. In addition, active flow control (AFC), via a steady control jet (issued from the pillar itself in the downstream direction), was implemented to induce favorable disturbances to the flow in order to alter the flow field, promote turbulence, and increase mixing. Together with passive flow control (i.e., a circular pillar), turbulent kinetic energy was significantly increased in a controllable manner throughout the flow field.  相似文献   

10.
Motion of monodispersed aerosol particles suspended in air flow has been studied on realistic transparent model of human airways using Phase Doppler Particle Analyser (P/DPA). Time-resolved velocity data for particles in size range 1–8 μm were processed using Fuzzy Slotting Technique to estimate the power spectral density (PSD) of velocity fluctuations. The optimum processing setup for our data was found and recommendations for future experiments to improve PSD quality were suggested. Typical PSD plots at mainstream positions of the trachea and the upper bronchi are documented and differences among (1) steady-flow regimes and equivalent cyclic breathing regimes, (2) inspiration and expiration breathing phase and (3) behaviour of particles of different sizes are described in several positions of the airway model. Systematically higher level of velocity fluctuations in the upper part of the frequency range (30–500 Hz) was found for cyclic flows in comparison with corresponding steady flows. Expiratory flows in both the steady and cyclic cases produce more high-frequency fluctuations compared to inspiratory flows. Negligible differences were found for flow of particles in the inspected size range 1–8 μm at frequencies below 500 Hz. This finding was explained by Stokes number analysis. Implied match of the air and particle flows thereby indicates turbulent diffusion as important deposition mechanism and confirms the capability to use the P/DPA data as the air flow velocity estimate.  相似文献   

11.
Structures vibrate with discrete natural frequencies, which divide the frequency spectrum into frequency-free ranges, or spectral gaps. We may need a structure to have a particular spectral gap, and if this range is found to contain frequencies then the structure must be changed. The extent of the changes depends on the number of natural frequencies that are contained in the required spectral gap – the rank of the bracing must be at least the number of frequencies to be removed. This paper first deals with bracing of this minimal rank, connecting to the least number of freedoms possible, and later generalises this to higher rank bracing, with connections to any number of freedoms. The question is thus If a required spectral gap contains n natural frequencies, can changes to the structure stiffness of rank r  n, connecting to c  r freedoms i1, i2,… , ic remove them? In all cases, a simple criterion is developed for answering this question, and if the answer is yes, all successful changes are identified as mappings from more fundamental sets. The cases are developed separately even though later cases imply earlier ones, for clarity of the argument.  相似文献   

12.
We discuss calculations of synthetic spectra for the interpretation and analysis of K-shell and bound-free emission from argon-doped deuterium-filled OMEGA direct-drive implosion cores. The spectra are computed using a model that considers collisional-radiative atomic kinetics, continuum-lowering, detailed Stark-broadened line shapes, line overlapping, and radiation transport effects. The photon energy range covers the moderately optically thick n = 3  n = 1 and n = 4  n = 1 line transitions in He- and H-like Ar, their associated satellite lines in Li- and He-like Ar, and several radiative recombination edges. At the high-densities characteristic of implosion cores, the radiative recombination edges substantially shift to lower energies thus overlapping with several line transitions. We discuss the application of the spectra to spectroscopic analysis of doped implosion cores.  相似文献   

13.
Synthetic fiber ropes are characterized by a very complex architecture and a hierarchical structure. Considering the fiber rope architecture, to pass from fiber to rope structure behavior, two scale transition models are necessary, used in sequence: one is devoted to an assembly of a large number of twisted components (multilayered), whereas the second is suitable for a structure with a central straight core and six helical wires (1 + 6). The part I of this paper first describes the development of a model for the static behavior of a fibrous structure with a large number of twisted components. Tests were then performed on two different structures subjected to axial loads. Using the model presented here the axial stiffness of the structures has been predicted and good agreement with measured values is obtained. A companion paper (Ghoreishi, S.R. et al., in press. Analytical modeling of synthetic fiber ropes, part II: A linear elastic model for 1 + 6 fibrous structures, International Journal of Solids and Structures, doi:10.1016/j.ijsolstr.2006.08.032) presents the second model to predict the mechanical behavior of a 1 + 6 fibrous structure.  相似文献   

14.
The particle fluctuation velocities of a horizontal self-excited gas–solid two-phase pipe flow with soft fins near MPD (minimum pressure drop) air velocity are first measured by high-speed PIV in the acceleration and fully-developed regimes. Then orthogonal wavelet multi-resolution analysis and power spectrum are used to reveal multi-scale characteristics of particle fluctuation velocity. It is observed that the pronounced peaks of the spectra of axial and vertical fluctuation velocities appear in the range of low frequency near the bottom of pipe. These peaks of spectra become larger and their frequencies decrease by using fins. In the range of low frequencies (3–25 Hz), the wavelet components of the fluctuating energy of axial particle velocity make the main contribution accounting for 87% and 93% respectively for non-fin and using fins near the bottom of pipe. In the range of relatively high frequency (50–400 Hz), however, the wavelet components of using fins, accounting for about 49%, become smaller than that of non-fin, accounting for about 72%, in the suspension flow regime near the top of pipe. The skewness factor of axial particle fluctuation velocity indicates that the wavelet components follow the Gaussian probability distribution as the central frequency decreases.  相似文献   

15.
We present the transient phenomena occurring during the impulsive control of flow separation over a NACA0015 airfoil at an incidence angle of 11° and a chord Reynolds number of 1 million. Actuation is performed via pneumatic vortex generators, impulsively activated in order to analyze the transient phenomena corresponding to the attachment process and, conversely, to transient re-separation occurring when the actuators are switched off. Measurements are performed using a linear array of unsteady pressure transducers and a single traversing crosswire. The pressure transducers are positioned in the separated region of the airfoil, which extends ∼ 0.3c upstream of the trailing edge at the above flow condition. To control the flow, the angled fluidic vortex generators are positioned in a single spanwise array located 0.3c downstream of the leading edge of the airfoil. We establish a statistical relationship between pressure and velocity signals during both the uncontrolled steady state and the transient processes of attachment and separation. The unsteady behavior of the attachment process is also qualitatively analyzed via a 0.3 million Reynold number visualizations. The emission of a “starting vortex” is evidenced. This corresponds to a transient increase of drag.  相似文献   

16.
A measurement technique of viscoelastic properties of polymers is proposed to investigate complex Poisson’s ratio as a function of frequency. The forced vibration responses for the samples under normal and shear deformation are measured with varying load masses. To obtain modulus of elasticity and shear modulus, the present method requires only knowledge of the load mass, geometrical characteristics of a sample, as well as both the amplitude ratio and phase lag of the forcing and response oscillations. The measured data were used to obtain the viscoelastic properties of the material based on a 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Standard composition (90% PDMS polymer + 10% catalyst) of silicone RTV rubber (Silastic® S2) were used for preparing three samples for axial stress deformation and three samples for shear deformation. Comprehensive measurements of modulus of elasticity, shear modulus, loss factor, and both real and imaginary parts of Poisson’s ratio were determined for frequencies from 50 to 320 Hz in the linear deformation regime (at relative deformations 10?6 to 10?4) at temperature 25 °C. In order to improve measurement accuracy, an extrapolation of the obtained results to zero load mass was suggested. For this purpose measurements with several masses need to be done. An empirical requirement for the sample height-to-radius ratio to be more than 4 was found for stress measurements. Different combinations of the samples with different sizes for the shear and stress measurements exhibited similar results. The proposed method allows one to measure imaginary part of the Poisson’s ratio, which appeared to be about 0.04–0.06 for the material of the present study.  相似文献   

17.
In order to investigate the potential seismic vibrations effect on two-phase flow in an annular channel, experimental tests with air-water two-phase flow under horizontal vibrations were carried out. A low-speed eccentric-cam vibration module capable of operating at motor speed of 45–1200 rpm (f = 0.75–20 Hz) was attached to an annular channel, which was scaled down from a prototypic BWR fuel sub-channel with inner and outer diameters of 19.1 mm and 38.1 mm, respectively. The two-phase flow was operated in the ranges of 〈jf〉 = 0.25–1.00 m/s and 〈jg〉 = 0.03–1.46 m/s with 27 flow conditions, and the vibration amplitudes controlled by cam eccentricity (E) were designed for the range of 0.8–22.2 mm. Ring-type impedance void meters were utilized to detect the area-averaged time-averaged void fraction under stationary and vibration conditions. A systematic experimental database was built and analyzed with effective maps in terms of flow conditions (〈jg〉-〈jf〉) and vibration conditions (E-f and f-a), and the potential effects were expressed by regions on the maps. In the 〈jg〉-〈jf〉 maps, the void fraction was found to potentially decrease under vibrations in bubbly flow regime and relatively lower liquid flow conditions, which may be explained by the increase of distribution parameter. Whereas and the void fraction may increase at the region closed to bubbly-to-slug transition boundary under vibrations, which may be explained by the changes of drift velocity due to flow regime change from bubbly to slug flows. No significant change in void fraction was found in slug flow regime under the present test conditions.  相似文献   

18.
In the present study, flow control mechanism of single groove on a circular cylinder surface is presented experimentally using Particle image velocimetry (PIV). A square shaped groove is patterned longitudinally on the surface of the cylinder with a diameter of 50 mm. The flow characteristics are studied as a function of angular position of the groove from the forward stagnation point of the cylinder within 0°  θ  150°. In the current work, instantaneous and time-averaged flow data such as vorticity, ω streamline, Ψ streamwise, u/Uo and transverse, v/Uo velocity components, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components are utilized in order to present the results of quantitative analyses. Furthermore, Strouhal numbers are calculated using Karman vortex shedding frequency, fk obtained from single point spectral analysis. It is concluded that a critical angular position of the groove, θ = 80° is observed. The flow separation is controlled within 0°  θ < 80°. At θ = 80°, the flow separation starts to occur in the upstream direction. The instability within the shear layer is also induced on grooved side of the cylinder with frequencies different than Karman vortex shedding frequency, fk.  相似文献   

19.
Numerical and experimental methods were used to explore temperature and pressure distributions inside an irregularly-shaped cavity of a novel three-dimensional space environment simulator (SES) system. In order to obtain better temperature and pressure distributions, a plenum chamber and airflow diffusion perforated plate were adopted. Three-dimensional heat and mass transfer characteristics were analyzed using the Standard kε turbulence model. Simulation results revealed that the temperature and pressure distributions were greatly improved with improved diffusion configuration design, the temperature gradient decreased from 5 K to 1 K, and the pressure gradient decreased to 0.5% of the former value. Based on the simulation results, an improved experimental system for simulating space environment was set up. This experiment system could supply airflow with temperature ranging from 193 K to 353 K for simulating the real space environment. Experimental results showed that the temperature and pressure fields had smaller gradients across the surface and the inner cavity, which agreed considerably with the numerical results. The results of this study present useful information for the design of similar cavity structure.  相似文献   

20.
This paper investigates experimentally the quasi-static and dynamic torsional behaviour of shape memory alloys wires under cyclic loading. A specifically designed torsional pendulum made of a Ni–Ti wire is described. Results on the quasi-static behaviour of the wire obtained using this setup are presented, giving an overall view of the damping capacity of the material as function of the amplitude of the loading (imposed torsional angle), the frequency and the temperature. The dynamical behaviour is then presented through measured frequency response function between forcing angle at the top of the pendulum and the difference between top and bottom rotation angles in the vicinity of the first eigenfrequency of the wire, i.e. in the range [0.3 Hz, 1 Hz]. The softening-type non-linearity and its subsequent jump phenomenon, predicted theorically by the decrease of the effective stiffness when martensite transformation starts is clearly evidenced and analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号