首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
《Tetrahedron: Asymmetry》2005,16(8):1449-1452
Alumina supported rhodium catalyst using cinchonidine as a stabilizer exhibited excellent performance in the asymmetric hydrogenation of ethyl pyruvate with the addition of quinine. Quinine as a chiral modifier can not only induce the enantioselectivity, but also greatly accelerate the reaction. Under the optimum conditions: 293 K, 7.0 MPa of hydrogen pressure and 4.6 × 10−3 mol/L of quinine concentration in THF, TOF of Rh/2(cinchonidine)-γ-Al2O3 as catalyst and ee value of (R)-ethyl lactate can achieve 894 h−1 and 71.6% ee, respectively.  相似文献   

2.
Complexation of rhodium(II) dimeric tetraacylates: tetraacetate Rh2AcO4, tetratrifluoroacetate Rh2TFA4 , and (S)-Mosher’s acid salt Rh2MTPA4 with both enantiomerically pure and racemic methionine and its derivatives: hydrochloric salt of methionine, hydrochloric salt of methionine methyl ester, N-formyl methionine, N-phthaloyl methionine, N-phthaloyl methyl ester of methionine, and methyl ester of N,N-dimethylmethionine has been investigated by means of 1H and 13C nuclear magnetic resonance (1H and 13C NMR) and absorption electronic spectroscopy in the visible range. Complexation processes were investigated in D2O or CDCl3 solutions, depending on the ligands’ and rhodium salts’ solubilities. Some supporting measurements were performed in the solid phase, using 13C and 15N CPMAS NMR techniques.All ligands investigated form 1:1 and 1:2 adducts in the solution, depending on the rhodium salt to ligand molar ratios. The complexation site in the ligands (S atom) was deduced on the basis of the NMR parameter adduct formation shift (Δδ = δadduct ? δligand) and calculated chemical shifts (DFT, NMR GIAO). In the cases of the Rh2TFA4 and Rh2MTPA4 adducts, decreasing the temperature within the range 220–254 K slowed down the ligand exchange and allowed us to observe the signals of all diastereoisomers in the 1H and 13C NMR spectra.  相似文献   

3.
《Supramolecular Science》1998,5(3-4):227-228
Embedding structures of a metal nanoparticle in an oxide matrix were first achieved by electron beam irradiation. In the system of Al/α-Al2O3. Al nanoparticles derived from θ-Al2O3 migrated and embedded in α-Al2O3 matrix having epitaxy relation, {1 1  0}α-Al2O3//{2 0 0} Al. The driving force of the embedding is momentum transfer from electrons or ions to Al atoms of nanoparticles in the pole piece of transmission electron microscopy.  相似文献   

4.
Transition metal oxides, especially perovskites, have been considered effective electrocatalysts for the oxygen evolution (OER) and oxygen reduction (ORR) reactions in an alkaline solution. Here, a series of lanthanum cobalt rhodium oxide perovskites with the chemical formula LaCo1-xRhxO3 (LCRO, 0.1 ≤ x ≤ 0.70) were prepared through the approach of solid-phase synthesis and their bifunctional electrocatalytic activity was assessed for both the OER and ORR. The crystallinity, morphology, surface, and electrocatalytic features of the LCRO were significantly correlated with the rhodium content. The LaCo0.7Rh0.3O3 electrocatalysts with x = 0.3 showed enhanced electrocatalytic bifunctional performance with a substantially lower OER/ORR onset potential of 1.38/0.73 V vs HRE, smaller Tafel slope (116/90 mV/dec), and low charge-transfer resistance, which is the most efficient catalyst among the other studied ratios and superior to the pristine lanthanum cobalt oxide benchmark electrocatalysts. The LaCo0.7Rh0.3O3 electrode exhibit good bifunctional electrocatalytic behavior and long-term durability with an OER and ORR onset potential gap (ΔE = EOER ? EORR) of only 0.65 V, which could be credited to the enriched oxygen vacancies, lattice expansion and the improved electrical conductivity upon the doping of larger size of Rh ions. The LaCo1-xRhxO3 catalysts are obtained from abundant materials that have the potential of highly-active bifunctional OER and ORR electrocatalysts.  相似文献   

5.
Novel γ-Al2O3 supported nickel (Ni/Al2O3) catalyst was developed as a functional layer for Ni–ScSZ cermet anode operating on methane fuel. Catalytic tests demonstrated Ni/Al2O3 had high and comparable activity to Ru–CeO2 and much higher activity than the Ni–ScSZ cermet anode for partial oxidation, steam and CO2 reforming of methane to syngas between 750 and 850 °C. By adopting Ni/Al2O3 as a catalyst layer, the fuel cell demonstrated a peak power density of 382 mW cm?2 at 850 °C, more than two times that without the catalyst layer. The Ni/Al2O3 also functioned as a diffusion barrier layer to reduce the methane concentration within the anode; consequently, the operation stability was also greatly improved without coke deposition.  相似文献   

6.
Aluminum–magnesium alloys, fabricated by bi-directional rotation ball milling, were used as a kind of promising solid fuel in “reactive material” that can be ignited by impact to release a large quantity of heats. Different percentages of Mg were added to Al to yield Al90%–Mg10% and Al70%–Mg30% alloys in order to probe the effect of Mg content on the microstructure and thermal reactivity of Al–Mg alloys. Structural characterization revealed that a nanometer-scale structure was formed and oxidation of as-fabricated alloy powders was faint. Moreover, as the Mg percentage increased, the particle size of alloy decreased with increasing brittleness of Al–Mg. TGA/DSC curves of the [Al70%–Mg30%]–O2 system exhibited an intense exothermic peak before melting with reaction heat of 2478 J g?1 and its weight increase reached 90.16% of its theoretical value, which contrasted clearly with 181.2 J g?1 and 75.35% of [Al90%–Mg10%]–O2 system, respectively. In addition, other than [Al90%–Mg10%]–Fe2O3 system, the [Al70%–Mg30%]–Fe2O3 system exhibited a considerable solid–solid reaction and a low activation energy. Finally, target penetration experiments were conducted and the results confirmed that a projectile composed of [Al70%–Mg30%]–Fe2O3 displayed a more complete ignition of target than that of Al–Fe2O3 formulation.  相似文献   

7.
A series of CeO2/γ-Al2O3 (CA) catalysts with CeO2 loading of 5, 10, 15 and 20 wt% were prepared by a facile incipient wetness impregnation technique. Another series of La3+ doped catalysts (LCA) were prepared, wherein, 1, 3 and 5 wt% of La2O3 was doped in 15 wt%CeO2/γ-Al2O3, which were designated as 1LCA, 3LCA and 5LCA catalysts. Both CA and LCA catalysts were characterized by thermogravimetric analysis (TGA), BET surface area, X-ray diffraction (XRD), Infrared (FT-IR) spectroscopy, UV–vis diffuse reflectance spectra (UV–vis DRS), transmission electron microscopy (TEM), temperature programmed desorption of NH3 (TPD of NH3) temperature programmed reduction (TPR), CO2 pulse chemisorption and O2 pulse chemisorption techniques. All CA and LCA catalysts were evaluated for ethylbenzene (EB) oxidative dehydrogenation to styrene (ST) in vapor phase under atmospheric pressure with CO2 as an oxidant. Albeit CA and LCA catalysts are active, 15CA and 3LCA catalysts are found to be the best catalysts of the respective series. Apart from compatible acid-base and redox characteristics, sufficient amount of solid solution clusters (CexLa1-xO2-δ) are responsible for superior activity of 3LCA catalyst.  相似文献   

8.
A chiral bidentate phosphoramidite (5a) was synthesized from Shibasaki’s linked-(R)-BINOL and P(NMe2)3 as a new ligand for rhodium(I)-catalyzed asymmetric 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds. The effects of 5a and Feringa’s monodentate phosphoramidite (4, R1, R2 = Et) on the yields and enantioselectivities were fully investigated. The reaction was significantly accelerated in the presence of a base such as KOH and Et3N, allowing the reaction to be completed at the lower temperatures than 50 °C. The addition to cyclic enones such as 2-cyclopentenone, 2-cyclohexenone and 2-cycloheptenone at 50 °C in the presence of an [Rh(coe)2Cl]2-4 (R1, R2 = Et) complex resulted in enantioselectivities up to 98%, though it was less effective for acyclic enones (0–70% ee). On the other hand, a complex between [Rh(nbd)2]BF4 and 5a completed the addition to cyclic enones within 2 h at room temperature in the presence of Et3N with 86–99% yields and 96–99.8% ee. This catalyst was also effective for acyclic enones, resulting in 62–98% yields and 66–94% ee. The 1,4-additions of arylboronic acids to unsaturated lactones and acyclic esters with rhodium(I)-phosphoramidites complexes were also investigated.  相似文献   

9.
The catalytic oxidation of methane was studied over calcined and reduced Pt–Pd/γ-Al2O3 catalysts, in the presence and the absence of SO2 in the CH4–O2 reaction feed. The effect of sulfation (SO2 + O2 for 4 h at 500 °C) was also studied on the catalyst resistance to deactivation by sulfur poisoning. Sulfating the calcined Pt–Pd/γ-Al2O3 catalysts resulted in a strong deactivation for the CH4–O2 reaction. However, the catalytic activity of the reduced-sulfated Pt–Pd/γ-Al2O3 catalyst for CH4–O2 reaction remained rather unaffected in the presence and in the absence of SO2 in the reaction feed. XPS analysis revealed, over reduced-sulfated Pt–Pd/γ-Al2O3 catalysts, the presence of Pt(0) metallic surface species on which SO2 interactions may be faster related to Pd surface species. The presence of Pt(0) may be necessary to prevent the interactions between SO2 and Pd surface species. Long time catalytic tests showed that the activity of a reduced Pt–Pd/γ-Al2O3 catalysts for CH4–O2 reactions remained rather unaffected despite the presence of SO2 in the reaction feed.  相似文献   

10.
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/γ-Al2O3 at temperatures of 800–900 °C. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm−2 min−1. After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm−2 min−1. SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 °C for more than 100 h without failure, with ethane conversion of ∼100%, CO selectivity of >91% and oxygen permeation fluxes of 10–11 ml cm−2 min−1.  相似文献   

11.
Single crystals of a new Ba–Rh–Ir–O oxide were grown from a molten potassium carbonate flux. The new compound, Ba12Rh9.25Ir1.75O33, is structurally related to the 2H-hexagonal perovskite structure and contains pseudo one-dimensional chains of alternating units of ten face-sharing (Rh/Ir)O6 octahedra and one (Rh/Ir)O6 trigonal prism. The magnetic susceptibility of Ba12Rh9.25Ir1.75O33 is featureless, indicating the absence of magnetic order. The oxide is a semiconductor with a room temperature resistance of 280 Ω.  相似文献   

12.
Oxygen permeation through dense ceramic membranes of perovskite-like SrCo0.9−xFe0.1CrxO3−δ (x = 0.01–0.05), Sr1−xyLnxCoO3−δ(Ln = La, Nd, Sm, Gd; x = 0.30–0.35; y = 0–0.10), SrCo1−xTixO3−δ (x = 0.05–0.20) and LaM1−xNixO3−δ (M = Ga, Co, Fe; x = 0–0.6) was studied. The SrCoO3−δ-based solid solutions with cubic perovskite structure were found to exhibit highest permeation fluxes compared to other membranes. However, high thermal expansion coefficients and interaction with gas species such as carbon dioxide may complicate the employment of SrCoO3−δ membranes for oxygen separation membranes. Alternatively, the LaGa1−xNixO3−δ (x = 0.2–0.5) perovskites, having significant permeation fluxes as well as thermal expansion coefficients in the range of (10.8–11.6) × 10−6 K−1, were demonstrated to be suitable as membrane materials at oxygen pressures from 1 × 10−2 to 2 × 104 Pa. Testing oxygen permeation at oxygen partial pressures of 1–60 atm showed that only oxides with a high oxygen deficiency such as SrCo0.85Ti0.15F3−δ possess sufficient oxygen permeation fluxes. The oxygen permeability of perovskites on the basis of LaGaO3 and LaCoO3−δ was found to be negligible at oxygen pressures above 15 atm, caused by low oxygen vacancy concentration and ionic conductivity of such ceramic materials.  相似文献   

13.
The solid acids such as ZrO2, Al2O3 and ZrO2-Al2O3 containing different ZrO2 loadings (10–80 mol%) were prepared by solution combustion method (SCM) and characterized for their total surface acidity by NH3-TPD/n-butylamine back titration method and crystallinity by powder X-ray diffraction (PXRD) technique. These solid acids were evaluated for their catalytic activity in the synthesis of novel O-acetylated products from substituted phenols, pyridine alcohols and aryl alcohols with acetic anhydride (AA) as an acetylating agent. The reaction conditions were optimized by varying the catalyst, molar ratio of the reactants, reaction temperature and amount of the catalyst. All the solid acids used in this study exhibited good catalytic activity in the reaction. In particular, ZrO2-Al2O3 containing 80 mol% of ZrO2 was found to be highly active in the acetylation reaction with high yield of acetylated products. Triangular correlation between the surface acidity, crystallinity and catalytic activity of solid acids was observed. These solid acids were found to be reactivable and reusable.  相似文献   

14.
A cobalt-free cubic perovskite oxide, SrFe0.9Nb0.1O3?δ (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm0.2Ce0.8O1.9 (SDC) for temperatures up to 1050 °C. The electrical conductivity of SFN sample reached 34–70 S cm?1 in the commonly operated temperatures of IT-SOFCs (600–800 °C). The area specific resistance was 0.138 Ω cm2 for SFN cathode on SDC electrolyte at 750 °C. A maximum power density of 407 mW cm?2 was obtained at 800 °C for single-cell with 300 μm thick SDC electrolyte and SFN cathode.  相似文献   

15.
Nanoclusters of Pt, Pt–Rh, Pt–SnO2 and Pt–Rh–SnO2 were successfully synthesized by polyol method and deposited on high-area carbon. HRTEM and XRD analysis revealed two phases in the ternary Pt–Rh–SnO2/C catalyst: solid solution of Rh in Pt and SnO2. The activity of Pt–Rh–SnO2/C for ethanol oxidation was found to be much higher than Pt/C and Pt–Rh/C and also superior to Pt–SnO2/C. Quasi steady-state measurements at various temperatures (30–60 °C), ethanol concentrations (0.01–1 M) and H2SO4 concentrations (0.02–0.5 M) showed that Pt–Rh–SnO2/C is about 20 times more active than Pt/C in the potential range of interest for the fuel cell application.  相似文献   

16.
A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C2 selectivity up to 40–70% was achieved, albeit that conversion rate were low, typically 0.5–3.5% at 800–900°C with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/γ-Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm2 min oxygen permeation flux were achieved under steady state at 850°C. Methane conversion and oxygen permeation flux increased with increasing temperature. No fracture of the membrane reactor was observed during syngas production. However, H2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875°C for more than 500 h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm2 min.  相似文献   

17.
The vibrational (infrared and Raman) spectroscopy is used in order to identify and characterize the following amphibole minerals with general formula W0–1X2Y5Z8O22(OH)2 (W = Na, K; X = Na, Ca; Y = Mg, Fe2+, Fe3+, Al; Z = Si, Al) originating from the localities in the Republic of Macedonia: glaucophane, Na2(Mg,Fe2+)3(Fe3+,Al)2Si8O22(OH)2; tremolite–actinolite, Ca2(Mg,Fe2+)5Si8O22(OH)2; hornblende (Na,K)0–1Ca2(Mg,Fe2+,Fe3+,Al)5(Si,Al)8 O22(OH)2 and arfvedsonite, NaNa2(Mg,Fe2+)4(Fe3+,Al)Si8O22(OH)2. The chemical composition of these minerals is not necessarily fixed. It is due to the possibility to form solid solution series with other minerals being their end-members (for example, tremolite–ferro-actinolite series, Ca2Mg5Si8O22(OH)2–Ca2Fe2+5Si8O22(OH)2). In this context, it is shown that the intensity and especially the number of the IR bands in the ν(OH) region could serve as a tool for exact mineral identification. Namely, it is based on the presence of different Y cations in various octahedral sites (M1 and M3), which is manifested by different spectral view. On the other hand, the expressed similarities in the 1300–370 cm−1 (IR) and 1200–100 cm−1 regions (Raman) of the spectra are observed due to their common structural characteristics (double chains of SiO4 tetrahedra). Thus, the bands in this region are tentatively prescribed mostly to the vibrations of the SiO4 tetrahedra. The results of our study are compared with the corresponding literature data for the analogous mineral species originating all over the world.  相似文献   

18.
Transition-metal doped double-perovskite structure oxides GdBaCo2/3Fe2/3Ni2/3O5+δ (FN-GBCO), GdBaCo2/3Fe2/3Cu2/3O5+δ (FC-GBCO), GdBaCoCuO5+δ (C-GBCO) and pristine GdBaCo2O5+δ (GBCO) were synthesized via a citrate combustion method. The thermal-expansion coefficient (TEC) and electrochemical performance of the oxides were investigated as potential cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The TEC exhibited by the FC-GBCO cathode up to 900 °C is 14.6 × 10?6 °C?1, which is lower than the value of GBCO (19.9 × 10?6 °C?1). Area specific resistances (ASR) of 0.165 Ω cm2 at 700 °C and 0.048 Ω cm2 at 750 °C were achieved for the FC-GBCO cathode on a Ce0.9Gd0.1O1.95 (CGO) electrolyte. An electrolyte supported (300 μm thick) single-cell configuration of FC-GBCO/CGO/Ni-CGO attained a maximum power density of 435 mW cm?2 at 700 °C. The unique composition of GBCO co-doped with Fe and Cu ions in the Co sites exhibited reduced TEC and enhancement of electrochemical performance and good chemical compatibility with CGO, and this composition is proving to be a potential cathode for IT-SOFCs.  相似文献   

19.
The effects of doping the mixed-conducting (La,Sr)FeO3−δ system with Ce and Nb have been examined for the solid-solution series, La0.5−2xCexSr0.5+xFeO3−δ (x = 0–0.20) and La0.5−2ySr0.5+2yFe1−yNbyO3−δ (y = 0.05–0.10). Mössbauer spectroscopy at 4.1 and 297 K showed that Ce4+ and Nb5+ incorporation suppresses delocalization of p-type electronic charge carriers, whilst oxygen nonstoichiometry of the Ce-containing materials increases. Similar behavior was observed for La0.3Sr0.7Fe0.90Nb0.10O3−δ at 923–1223 K by coulometric titration and thermogravimetry. High-temperature transport properties were studied with Faradaic efficiency (FE), oxygen-permeation, thermopower and total-conductivity measurements in the oxygen partial pressure range 10−5–0.5 atm. The hole conductivity is lower for the Ce- and Nb-containing perovskites, primarily as a result of the lower Fe4+ concentration. Both dopants decrease oxide-ion conductivity but the effect of Nb-doping on ionic transport is moderate and ion-transference numbers are higher with respect to the Nb-free parent phase, 2.2 × 10−3 for La0.3Sr0.7Fe0.9Nb0.1O3−δ cf. 1.3 × 10−3 for La0.5Sr0.5FeO3−δ at 1223 K and atmospheric oxygen pressure. The average thermal expansion coefficients calculated from dilatometric data decrease on doping, varying in the range (19.0–21.2) × 10−6 K−1 at 780–1080 K.  相似文献   

20.
The effect of calcination temperatures on dry reforming catalysts supported on high surface area alumina Ni/γ-Al2O3 (SA-6175) was studied experimentally. In this study, the prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600, 700 and 800 °C at atmospheric pressure, using a total flow rate of 33 ml/min consisting of 3 ml/min of N2, 15 ml/min of CO2 and 15 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor at 500–800 °C using hydrogen gas. It was observed that calcination enhances catalyst activity which increases as calcination and reaction temperatures were increased. The highest conversion was obtained at 800 °C reaction temperature by using catalyst calcined at 900 °C and activation at 700 °C. The catalyst characterization conducted supported the observed experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号