首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-(2,3-Dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (DMPP) a potential second harmonic generating (SHG) has been synthesized and grown as a single crystal by the slow evaporation technique at ambient temperature. The structure determination of the grown crystal was done by single crystal X-ray diffraction study. DMPP crystallizes with orthorhombic system with cell parameters a = 20.3106(8) Å, b = 4.9574(2) Å, c = 13.4863(5) Å, α = 90°, β = 90°, γ = 90° and space group Pca21. The crystals were characterized by FT-IR, thermal analysis, UV–vis–NIR spectroscopy and SHG measurements. Various functional groups present in DMPP were ascertained by FTIR analysis. DMPP is thermally stable up to 80 °C and optically transparent in the visible region. The crystal exhibits SHG efficiency comparable to that of KDP.  相似文献   

2.
Single crystals of a new phosphate AgCr2(PO4)(P2O7) have been prepared by the flux method and its structural and the infrared spectrum have been investigated. This compound crystallizes in the monoclinic system with the space group C2/c and the parameters are, a = 11.493 (3) Å, b = 8.486 (3) Å, c = 8.791 (2) Å, β = 114.56 (2)°, V = 779.8 (3) Å3and Z = 4. Its structure consists of CrO6 octahedra sharing corners with P2O7 units to form undulating chains extending infinitely along the [110] direction. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the Ag+ ions are located. The infrared spectrum of this compound was interpreted on the basis of P2O74? and PO43? vibrations. The appearance of νsP–O–P in the spectrum suggests a bent P–O–P bridge for the P2O74? ions in the compound, which is in agreement with the X-ray data. The electrical measurements allow us to obtain the activation energy of (1.36 eV) and the conductivity measurements suggest that the charge carriers through the structure are the silver captions.  相似文献   

3.
《Solid State Sciences》2001,3(1-2):25-30
The first silver palladium oxide, Ag2PdO2, was synthesised from a co-precipitated oxide precursor by annealing at 423–823 K, applying an oxygen pressure of 73 MPa. The crystal structure has been determined from X-ray and neutron powder diffraction data. The new compound crystallises in space group Immm. The lattice constants as determined from X-ray powder diffraction are a=4.55523(5) Å, b=3.00803(3) Å and c=9.8977(1) Å. The crystal structure constitutes a new structure type showing some features in common with the Li2CuO2-type. Palladium is found in a nearly square planar arrangement while silver has an almost linear co-ordination. The overall structure can be considered as a rocksalt defect structure. Ag2PdO2 is diamagnetic and semiconducting. The band gap, estimated from conductivity measurements in the temperature range of 240–300 K, is 0.18(2) eV.  相似文献   

4.
The solubilities in the three-component systems MIO3–Be(IO3)2–H2O (M = K, NH4+, Rb, Cs) were studied at 25 °C by the method of isothermal decrease of supersaturation. It has been established that double salts, K2Be(IO3)4·2H2O, (NH4)2Be(IO3)4·2H2O, and Rb2Be(IO3)4·2H2O, crystallize from the ternary solutions within wide concentration ranges. Both the X-ray powder diffraction and the spectroscopic studies (infrared and Raman) reveal that the title compounds are isostructural. They crystallize in the monoclinic space group P2/m with lattice parameters: K2Be(IO3)4·2H2O – a = 14.218(5) Å, b = 6.747(2) Å, c = 5.765(2) Å, β = 98.74(4)°, V = 546.6(2) Å3; (NH4)2Be(IO3)4·2H2O – a = 14.414(4) Å, b = 6.838(2) Å, c = 5.947(2) Å, β = 99.52(4)°, V = 578.0(2) Å3; Rb2Be(IO3)4·2H2O – a = 14.423(4) Å, b = 6.867(2) Å, c = 5.743(3) Å, β = 98.15(3)°, V = 562.9(3) Å3.Infrared spectroscopic experiments show that comparatively strong hydrogen bonds are formed in the potassium and rubidium salts as deduced from the wavenumbers of νOD of matrix-isolated HDO molecules (isotopically dilute samples) owing to the strong Be–OH2 interactions (synergetic effect). However, the IO3 ions in the ammonium compound are involved in hydrogen bonds with NH4+ ions additionally to those with water molecules and as a result of these intermolecular interactions the proton acceptor strength of the iodate ions decreases (anti-cooperative effect), thus leading to the formation of weaker hydrogen bonds in this compound (bonds of moderate strength) as compared to those formed in the potassium and rubidium ones. The normal vibrations of other entities (IO3 ions and BeO4 tetrahedra (skeleton vibrations)) are also discussed.  相似文献   

5.
A new complex of oxovanadium(IV), V2O2[(HB(pz)3)2(pyrro)2 (1) and a dimer-dithio carboxyl compound (C5H8NS2)2 (2) have been synthesized by the reaction of VOSO4·nH2O with NaHB(pz)3 and pyrrolidine dithio carboxylic acid ammonium salt. They were characterized by element analysis, IR spectra, UV–vis spectra and X-ray diffraction. Structural analyses of 1 and 2 gave the following parameters: 1, triclinic, P-1, a = 7.732(4) Å, b = 14.285(8) Å, c = 17.802(9) Å, α = 101.314(8)°, β = 92.682(9)°, γ = 92.228(9)°, V = 1923.6(18) Å3, and Z = 4; 2, monoclinic, C2/c, a = 13.857(2) Å, b = 10.4213(18) Å, c = 9.436(2) Å, β = 97.099(2), V = 1352.1(4) Å3, and Z = 4. In complex 1, vanadium atom adopts a distorted tetragonal bipyramid structure, which is typical for oxovanadium(IV) complexes. Compound 2 is a dimer-dithio carboxyl compound with S–S bond. In addition, thermal analysis was performed for analyzing the stabilization of the complexes.  相似文献   

6.
Two new oxynitride double perovskites of composition Sr2FeMoO6?xNx (x=0.3, 1.0) have been synthesized by annealing precursor powders obtained by citrate techniques in flowing ammonia at 750 °C and 650 °C, respectively. The polycrystalline samples have been characterized by chemical analysis, x-ray and neutron diffraction (NPD), Mössbauer spectroscopy and magnetic measurements. They exhibit a tetragonal structure with a=5.5959(1) Å, c=7.9024(2) Å, V=247.46(2) Å3 for Sr2FeMoO5.7N0.3; and a=5.6202(2) Å, c=7.9102(4) Å, V=249.85(2) Å3 for Sr2FeMoO5N; space group I4/m, Z=2. The nitridation process seems to extraordinarily improve the long-range Fe/Mo ordering, achieving 95% at moderate temperatures of 750 °C. The analysis of high resolution NPD data, based on the contrast existing between the scattering lengths of O and N, shows that both atoms are located at (O,N)2 anion substructure corresponding to the basal ab plane of the perovskite structure, whereas the O1 site is fully occupied by oxygen atoms. The evolution of the 〈Fe–O〉 and 〈Mo–O〉 distances suggests a shift towards a configuration close to Fe4+(3d4, S=2):Mo5+(4d1, S=1/2). The magnetic susceptibility shows a ferrimagnetic transition with a reduced saturation magnetization compared to Sr2FeMoO6, due to the different nature of the magnetic double exchange interactions through Fe–N–Mo–N–Fe paths in contrast to the stronger Fe–O–Mo–O–Fe interactions. Also, the effect observed by low-temperature NPD seems to reduce the ordered Fe moments and enhance the Mo moments, in agreement with the evolution of the oxidation states, thus decreasing the saturation magnetization.  相似文献   

7.
An inorganic compound formulated as K5NH4[TeMo6O24].Te(OH)6.6H2O (1) has been isolated by conventional solution method and structurally characterized by single-crystal X-ray diffraction methods, scanning electron microscopy (SEM), IR, UV–vis spectra, and cyclic voltammetry measurements. This compound crystallizes in the monoclinic system, space group C2/c with unit a = 18.6841(1) Å, b = 10.0513(1) Å, c = 21.1065(1) Å, β = 116.495(1)°, V = 3547.49(4) Å3, Z = 4, R = 0.033 and wR (F2) = 0.087 for 3432 unique observed reflexions [I > 2σ(I)]. The crystal structure of (1) is built up from an Anderson clusters connected through hydrogen-bonding interactions into a three-dimensional supramolecular network.  相似文献   

8.
《Solid State Sciences》2001,3(1-2):121-132
The structures of the tetramethylammonium dichromate, [(CH3)4N]2Cr2O7 and trichromate, [(CH3)4N]2Cr3O10, were determined from single-crystal X-ray diffraction data. These compounds crystallize in the orthorhombic system (space group Pnma, with Z=4 and a=17.192(1) Å, b=8.55(1) Å, c=10.637(1) Å), for the dichromate and in the monoclinic system (space group P21/n, with Z=4 and a=11.366(2) Å, b=8.493(2) Å, c=20.187(4) Å, β=103.98(3)° for the trichromate. The structures consist of discrete dichromate anions (Cr2O7)2– or trichromate anions (Cr3O10)2–, respectively, stabilized by quaternary ammonium [(CH3)4N]+. Phase transitions in [(CH3)4N]2Cr2O7 have been evidenced by differential scanning calorimetry as well as a new allotropic variety of [(CH3)4N]2Cr2O7 which was characterized by X-ray powder diffraction. It crystallizes in an orthorhombic system with the unit cell parameters a=24.49(1) Å, b=8.85(1) Å, c=8.705(8) Å.  相似文献   

9.
The structures of tin(II)-oxalate, tin(IV)Na–EDTA and tin(IV)Na8-inositol hexaphosphate were investigated using XRD analysis. Samples were identified using the Mössbauer study, thermal analysis and FTIR spectrometry. The Mössbauer study determined two different oxidation states of tin atoms, and consequently two different tin surroundings in the end products. The tin oxalate was found to be orthorhombic with space group Pnma, a=9.2066(3) Å, b=9.7590(1) Å, c=13.1848(5) Å, V=1184.62 Å3 and Z=8. SnNa–EDTA was found to be monoclinic with space group P21/c1, a=10.7544(3) Å, b=10.1455(3) Å, c=16.5130(6) Å, β=98.59(2)°, V=1781.50(4) Å3 and Z=4. Sn(C6H6Na8O24P6) was found to be amorphous.  相似文献   

10.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

11.
《Solid State Sciences》2007,9(6):459-464
The synthesis and crystal structure of the red transparent lithium boride Li6B18(Li2O)x (0 < x  1) is reported. The lattice constants are a = 8.21708(17) Å and c = 4.15893(16) Å for x = 0.26 (powder data), a = 8.223(4) Å and c = 4.160(2) Å for x = 0.7 (single crystal data), a = 8.21179(16) Å and c = 4.14485(13) Å for x = 0.9 (powder data). The compound crystallizes in the space group P6/mmm (no. 191). The crystal structure consists of B6 octahedra forming a 3-dimensional network with large open channels. This compound has remarkable topological similarities with hexagonal tungsten bronzes and zeolites and is only formed, when a template is present during the synthesis.  相似文献   

12.
《Solid State Sciences》2007,9(3-4):258-266
The thermal study of Cu0.50TiO(PO4), by X-ray diffraction and DSC, shows a phase transition α  β with a hysteresis (∼600 °C during heating; ∼300 °C during cooling). Single crystals have been obtained for the α-phase but the β-phase can only be stabilised at room temperature as a powder mixture with α. Structural characterization of the β-variety has been done with diffraction data (X-ray Cu Kα1 and neutrons) using a powder rich in β-phase (α(20%) + β(80%)). A monoclinic cell (a = 7.1134(7) Å; b = 7.7282(7) Å; c = 7.3028(7) Å; β=119.30(1)°; V = 350.1(1) Å3) has been found for β-phase, space group P21/c. An “ab initio” structure determination has been done, and the Rietveld refinement leads to cRwp = 0.150 and RB = 0.041. The results from the X-ray data were confirmed by refinements from neutron data.Similarly to the α-phase, the structure of β-Cu0.50TiO(PO4) can be described as a TiOPO4 framework constituted of chains of tilted corner-sharing [TiO6] octahedra running parallel to the c axis and cross linked by [PO4] tetrahedra. Ti atoms are displaced from the centres of the octahedral units, leading to long (2.27 Å) and short (1.73 Å) Ti–O(1) bonds. The [CuO6] octahedra exhibit a typical Jahn–Teller distorted coordination with four short equatorial Cu–O bonds (2 × 1.93 Å and 2 × 2.06 Å), and two longer apical Cu–O bonds (2 × 2.33 Å). The two longer Cu–O bonds are almost parallel to the b axis.The transition from the α to the β-phase is characterized by a “rocking” of the Jahn–Teller elongation from the (a,c) plane to the b direction accompanied by a relatively strong expansion of the cell volume.  相似文献   

13.
《Solid State Sciences》2007,9(2):205-212
SrSi2O2N2 is an important host lattice for Eu2+ doped phosphors. Its crystal structure (space group P1, a = 7.0802(2) Å, b = 7.2306(2) Å, c = 7.2554(2) Å, α = 88.767(3)°, β = 84.733(2)°, γ = 75.905(2)° and V = 358.73(2) Å3, Z = 4) is isotypic with EuSi2O2N2: highly condensed silicate layers are separated by Sr2+. The samples are characterized by pronounced real structure effects owing to pseudosymmetry of partial structures. Polysynthetic twinning with domains of various sizes is ubiquitous and oriented intergrowth of domains with different orientations has also been observed and analysed in detail by means of electron diffraction and high-resolution electron microscopy. These effects also affect the X-ray powder pattern and were taken into account in a Rietveld refinement.  相似文献   

14.
The new compound {[In(C6H14N2)2]2Sb4S8}Cl2 was prepared under solvothermal conditions reacting InCl3, Sb and S using 1,2-trans-diaminocyclohexane as solvent and structure directing molecule. The compound crystallizes in the monoclinic space group C2/c with a = 29.0259(12), b = 6.7896(2), c = 24.2023(12) Å, β = 99.524(4)°, V = 4703.9(3) Å3. The central structural motif is the thioantimonate(III) anion [Sb4S8]4? acting as a tetradentate ligand thus joining two symmetry related In3+ centered complexes. This binding mode was never observed before for the [Sb4S8]4? anion. The optical band gap was determined as 2.03 eV in agreement with the red color of the compound. The thermal decomposition was monitored with in-situ X-ray diffraction experiments. After the emission of the amine molecules an amorphous intermediate is formed followed by the crystallization of InSbS3 which is stable up to about 590 °C. On further heating, InSbS3 is destroyed and reflections of γ-In2S3 appear being contaminated with some elemental Sb. Temperature dependent in-situ X-ray powder diffractometry performed between 30 and 220 °C reveals an unusual reversible negative and positive thermal expansion. The decrease of the a-axis in the temperature range is about 0.74 Å and the increase of the c-axis ca. 0.54 Å. Interestingly, the b-axis exhibits also a thermal expansion, i.e., a biaxial positive and an uniaxial negative thermal expansion coexist which is very unusual. The relative negative expansion coefficients for the a-axis of ?194 × 10?6K?1 (30–120 °C) and ?82 × 10?6K?1 (120–220 °C) are in the region of so-called colossal thermal expansion.  相似文献   

15.
A new molybdenum complex (C4H12N2)2[(MoV2O4)(MoVIO4)(C2O4)2]·2H2O, was solvothermally synthesized and characterized by single-crystal X-ray diffraction. The structure of the compound consists of oxalate acid-coordinated mixed-valent [MoV2O4][MoVIO4] helical chains and protonated piperazine cations. The helical chains are built up from the [MoV2O4] units and [MoVIO4] tetrahedral. The central axis about helical chain is a 2-fold screw axis. The compound crystallizes in the space group P21/n of monoclinic system with a = 11.396(2) Å, b = 14.107(3) Å, c = 15.805(3) Å, β = 102.09(3)°, V = 2484.6(9) Å3, Z = 4. Other characterizations by elemental analysis, IR, and thermal analysis for this compound are also given.  相似文献   

16.
A new polyoxomolybdophosphate 1, formulated as [Cu(phen)2][Cu(phen)H2O]2[Mo5P2O23]·3.5H2O (phen = 1,10-phenanthroline) has been synthesized under hydrothermal conditions. Compound 1 crystallizes in the triclinic space group P-1 with a = 12.2429(5) Å, b = 14.3543(5) Å, c = 20.0814(8) Å, α = 80.023 (1)°, β = 74.283 (1)°, γ = 66.452(1)°, V = 3105.8(2) Å3, R1 = 0.0375, wR2 = 0.0885, Z = 2 and GOF = 1.009. Compound 1 is constructed from diphosphopentamolybdate clusters coordinated to Cu(II)-phen units, and free water molecules, which are connected to a three-dimensional framework via π–π stacking interactions from the phen ligands. The single-crystal X-ray diffraction, FT-IR, TG-DTA, XPS, EPR and fluorescent spectra for this compound were determined. The electrochemical properties of compound 1 are studied using cyclic voltammogram, the results indicated that the compound 1 shows good electrocatalytic activity to NO2?.  相似文献   

17.
《Solid State Sciences》2007,9(11):1036-1048
The structure of [C3N2H5]4[Bi2Br10]·2H2O, (PBB) was determined by single crystal X-ray diffraction at 100 K. It crystallizes in the monoclinic space group C2/m, with a = 12.992(4) Å, b = 16.326(5) Å, c = 8.255(3) Å, β = 108.56°(3), V = 1659.9(9) Å3 and Z = 2. The structure consists of discrete binuclear [Bi2Br10]4− anions, ordered pyrazolium cations and water molecules. The crystal packing is governed by strong N–H⋯O and weak O–H⋯Br hydrogen bonds. A sequence of structural phase transitions in PBB was established on the basis of differential scanning calorimetry and dilatometric studies. Two reversible first-order phase transitions were found: (I  II) at 381/371 K (on heating/cooling) and (II  III) at 348/338 K. Dielectric response near both phase transitions is characteristic of crystals with the “plastic-like” phases. Over the phase III a low frequency dielectric relaxator is disclosed. The possible molecular motions in the PBB compound are characterized by the 1H NMR studies. The infrared spectra of polycrystalline compound in the temperature range 300–380 K are reported for the region 4000–400 cm−1. The observed spectral changes through the structural phase transition III  II are attributed to an onset of motion both of the pyrazolium cations and water molecules.  相似文献   

18.
The title compound MIL-131 (MIL stands for Material from Institut Lavoisier) was prepared hydrothermally (4 days, 473 K, autogenous pressure) in the presence of an organic base (N((CH2)2NH2)3). The structure of MIL-131 or TiIIITiIV(OH)F4(HPO4)·(PO4)·(N((CH2)2NH3)3) has been determined ab initio from X-Ray synchrotron powder diffraction data using simulated annealing methods and was refined in the triclinic space group P-1 (no. 2). MIL-131 exhibits a one-dimensional structure built up from inorganic chains of corner sharing TiO5(OH) titanium(III) octahedra and PO4 and HPO4 phosphate tetrahedra, related to TiO2F4 titanium octahedra. Protonated triamine cations are located between the inorganic motifs, and interact strongly with the mineral network through hydrogen bondings both with terminal fluorine atoms and hydroxo or oxo groups. Multinuclear solid state NMR has allowed a clear attribution of the protons, fluoride, and phosphate groups environment within the framework of MIL-131. The large values of chemical shift anisotropy together with the absence of any 13C NMR response confirmed the presence of paramagnetic titanium(III) species deduced from the crystal structure. Finally, 2D MAS 1H-31P CP-HETCOR NMR correlation experiment gives some insight on the nature of the intra-framework hydrogen bonding.Crystal data for MIL-131: a = 14.109(1) Å, b = 8.462(3) Å, c = 7.179(1) Å, α = 93.772(1)°, β = 96.566(2)°, γ = 98.004(1)°, V = 840.36(2) Å3, z = 2.  相似文献   

19.
We have extended our research interest on titanium oxyphosphates (MII(TiO)2(PO4)2, with MII = Mg, Fe, Co, Ni, Cu, Zn) to vanadium oxyphosphates MII(VIVO)2(PO4)2 (MII = Co, Ni). For each compound two phases, named α and β according to synthesis conditions, have been stabilized at room temperature, then characterized. The four crystal structures M(VO)2(PO4)2 (α and β for M = Co, Ni) have been determined in monoclinic P21/c space group using X-ray single crystals diffraction data. Structure of the α phase is derived from the Li(TiO)(PO4) (orthorhombic Pnma) and LiNi0.50(TiO)2(PO4)2 (monoclinic P21/c) types, with cell parameters: a = 6.310(1) Å, b = 7.273(1) Å, c = 7.432(1) Å, β = 90.43(1)° for M = Co, and a = 6.297(2) Å, b = 7.230(2) Å, c = 7.421(2) Å, β = 90.36(2)° for M = Ni. Structure of the β phase is derived from the Ni(TiO)2(PO4)2-type (monoclinic P21/c) with cell parameters: a = 7.2742(2) Å, b = 7.2802(2) Å, c = 7.4550(2) Å, β = 120.171(2)° for M = Co, and a = 7.2691(2) Å, b = 7.2366(2) Å, c = 7.4453(2) Å, β = 120.231(2)° for M = Ni. All these structures consist of a three dimensional (3D) framework built up of infinite chains of tilted corner-sharing [VO6] octahedra, cross-linked by corner-sharing [PO4] tetrahedra. The M2+ ion (M = Co, Ni) is located in a triangular based antiprism which shares faces with two [VO6] octahedra. Structural filiation is discussed based on a common structural unit, a sheet where divalent cations M2+ (M = Co, Ni) are inserted. A thermal study of the α ? β transition is also presented.  相似文献   

20.
《Solid State Sciences》2007,9(6):465-471
The structure of the new hybrid compound [Ni3(OH)2(tp)2(H2O)4]·2H2O (tp = C8H4O42−) has been determined ab initio from synchrotron powder diffraction data and refined with the Rietveld method: space group P-1, a = 10.2077(6) Å, b = 8.0135(5) Å, c = 6.3337(4) Å, α = 97.70 (1)°, β = 97.21(1)°, γ = 108.77(1)°, Dx = 2.124 g/cm3, Rp = 0.045, RB = 0.095 (757 independent reflections). H atoms were placed geometrically and their position optimized by DFT calculation. The repeating structural unit is the chain [Ni(1)O6]2Ni(2)O6, consisting of two edges sharing octahedrons related by the symmetry center and linked via μ3-OH to a vertex of Ni(2) octahedron. The Ni(1) coordination is ensured by two oxygen atoms from two water molecules, two OH and two oxygen atoms from carboxylate groups. The linkage of the chains by the tp anions forms infinite layers parallel to the (010) planes. Interchain hydrogen bonds between the water molecules coordinating the metal ensure the cohesion of the 2D structure. The structural and magnetic properties are compared with that of the 3D fumarate-based compound [Ni3(OH)2(fum)2(H2O)4]·2H2O (fum = C4H2O42−).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号