首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An expanding cavity model (ECM) for determining indentation hardness of elastic strain-hardening plastic materials is developed. The derivation is based on a strain gradient plasticity solution for an internally pressurized thick-walled spherical shell of an elastic power-law hardening material. Closed-form formulas are provided for both conical and spherical indentations. The indentation radius enters these formulas with its own dimensional identity, unlike that in classical plasticity based ECMs where indentation geometrical parameters appear only in non-dimensional forms. As a result, the newly developed ECM can capture the indentation size effect. The formulas explicitly show that indentation hardness depends on Young’s modulus, yield stress, strain-hardening exponent and strain gradient coefficient of the indented material as well as on the geometry of the indenter. The new model reduces to existing classical plasticity based ECMs (including Johnson’s ECM for elastic–perfectly plastic materials) when the strain gradient effect is not considered. The numerical results obtained using the newly developed model reveal that the hardness is indeed indentation size dependent when the indentation radius is very small: the smaller the indentation, the larger the hardness. Also, the indentation hardness is seen to increase with the Young’s modulus and strain-hardening level of the indented material for both conical and spherical indentations. The strain-hardening effect on the hardness is observed to be significant for materials having strong strain-hardening characteristics. In addition, it is found that the indentation hardness increases with decreasing cone angle of the conical indenter or decreasing radius of the spherical indenter. These trends agree with existing experimental observations and model predictions.  相似文献   

2.
Knowledge of the relationship between the penetration depth and the contact radius is required in order to determine the mechanical properties of a material starting from an instrumented indentation test. The aim of this work is to propose a new penetration depth–contact radius relationship valid for most metals which are deformed plastically by parabolic and spherical indenters. Numerical simulation results of the indentation of an elastic–plastic half-space by a frictionless rigid paraboloïd of revolution show that the contact radius–indentation depth relationship can be represented by a power law, which depends on the reduced Young’s modulus of the contact, on the strain hardening exponent and on the yield stress of the indented material. In order to use the proposed formulation for experimental spherical indentations, adaptation of the model is performed in the case of a rigid spherical indenter. Compared to the previous formulations, the model proposed in the present study for spherical indentation has the advantage of being accurate in the plastic regime for a large range of contact radii and for materials of well-developed yield stress. Lastly, a simple criterion, depending on the material mechanical properties, is proposed in order to know when piling-up appears for the spherical indentation.  相似文献   

3.
Three-dimensional numerical simulations of Berkovich, Vickers and conical indenter hardness tests were carried out to investigate the influence of indenter geometry on indentation test results of bulk and composite film/substrate materials. The strain distributions obtained from the three indenters tested were studied, in order to clarify the differences in the load–indentation depth curves and hardness values of both types of materials. For bulk materials, the differentiation between the results obtained with the three indenters is material sensitive. The indenter geometry shape factor, β, for evaluating Young’s modulus for each indenter, was also estimated. Depending on the indenter geometry, distinct mechanical behaviours are observed for composite materials, which are related to the size of the indentation region in the film. The indentation depth at which the substrate starts to deform plastically is sensitive to indenter geometry.  相似文献   

4.
Spherical indentation is studied based on numerical analysis and experiment, to develop robust testing techniques to evaluate isotropic elastic–plastic material properties of metals. The representative stress and plastic strain concept is critically investigated via finite element analysis, and some conditions for the representative values are suggested. The representative values should also be a function of material properties, not only indenter angle for sharp indenter and indentation depth for spherical indenter. The pros and cons of shallow and deep spherical indentation techniques are also discussed. For an indentation depth of 20% of an indenter diameter, the relationships between normalized indentation parameters and load–depth data are characterized, and then numerical algorithm to estimate material elastic–plastic curve is presented. From the indentation load–depth curve, the new approach provides stress–strain curve and the values of elastic modulus, yield strength, and strain-hardening exponent with an average error of less than 5%. The method is confirmed to be valid for various elastic properties of indenter. Experimental validation of the approach then is performed by using developed micro-indentation system. For the material severely disobeying power law hardening, a modified method to reduce errors of predicted material properties is contrived. It is found that our method is robust enough to get ideal power law properties, and applicable to input of more complex physics.  相似文献   

5.
A method for deducing the stress–strain uniaxial properties of metallic materials from instrumented spherical indentation is presented along with an experimental verification.An extensive finite element parametric analysis of the spherical indentation was performed in order to generate a database of load vs. depth of penetration curves for classes of materials selected in order to represent the metals commonly employed in structural applications. The stress–strain curves of the materials were represented with three parameters: the Young modulus for the elastic regime, the stress of proportionality limit and the strain-hardening coefficient for the elastic–plastic regime.The indentation curves simulated by the finite element analyses were fitted in order to obtain a continuous function which can produce accurate load vs. depth curves for any combination of the constitutive elastic–plastic parameters. On the basis of this continuous function, an optimization algorithm was then employed to deduce the material elastic–plastic parameters and the related stress–strain curve when the measured load vs. depth curve is available by an instrumented spherical indentation test.The proposed method was verified by comparing the predicted stress–strain curves with those directly measured for several metallic alloys having different mechanical properties.This result confirms the possibility to deduce the complete stress–strain curve of a metal alloy with good accuracy by a properly conducted instrumented spherical indentation test and a suitable interpretation technique of the measured quantities.  相似文献   

6.
金属材料的强度与应力-应变关系的球压入测试方法   总被引:4,自引:0,他引:4  
压入法获取材料单轴应力-应变关系和抗拉强度对服役结构完整性评价有重要的基础意义.假定材料均匀连续、各向同性、应力应变关系符合Hollomon律,基于能量等效假定,即代表性体积单元(representativevolume element, RVE)的vonMises等效和有效变形域内能量中值等效假定,本文提出了关联材料载荷、深度、球压头直径和Hollomon律的四参数半解析球压入(semi-analyticalspherical indentation,SSI)模型.通过球压入载荷-深度试验关系获得材料的应力-应变关系和抗拉强度.考虑压入过程中的损伤效应,针对金属材料提出了用于球压入测试的材料弹性模量修正模型.对11种延性金属材料完成了球压入试验,采用本文提出的球压入试验方法测到的弹性模量、应力-应变关系和抗拉强度与单轴拉伸试验结果吻合良好.   相似文献   

7.
Experimental results are presented which show that the indentation size effect for pyramidal and spherical indenters can be correlated. For a pyramidal indenter, the hardness measured in crystalline materials usually increases with decreasing depth of penetration, which is known as the indentation size effect. Spherical indentation also shows an indentation size effect. However, for a spherical indenter, hardness is not affected by depth, but increases with decreasing sphere radius. The correlation for pyramidal and spherical indenter shapes is based on geometrically necessary dislocations and work-hardening. The Nix and Gao indentation size effect model (J. Mech. Phys. Solids 46 (1998) 411) for conical indenters is extended to indenters of various shapes and compared to the experimental results.  相似文献   

8.
A technique is proposed to estimate the energy density as fracture toughness for ductile bulk materials with an indentation system equipped with a Berkovich indenter based on the theory of plastic deformation energy transforming into the indentation energy of fracture. With progressive increase of penetration loads, the material damage is exhibited on the effective elastic modulus. A quadratic polynomial relationship between the plastic penetration depth and penetration load, and an approximate linear relationship between logarithmic plastic penetration depth and logarithmic effective elastic modulus are exhibited by indentation investigation with Berkovich indenter. The parameter of damage variable is proposed to determine the critical effective elastic modulus at the fracture point. And the strain energy density factor is calculated according to the equations of penetration load, plastic penetration depth and effective elastic modulus. The fracture toughness of aluminum alloy and stainless steel are evaluated by both indentation tests and KIC fracture toughness tests. The predicted Scr values of indentation tests are in good agreement with experimental results of CT tests.  相似文献   

9.
Frictionless normal indentation problem of rigid flat-ended cylindrical, conical and spherical indenters on piezoelectric film, which is either in frictionless contact with or perfectly bonded to an elastic half-space (substrate), is investigated. Both conducting and insulating indenters are considered. With Hankel transform, the general solutions of the homogeneous governing equations for the piezoelectric layer and the elastic half-space are presented. Using the boundary conditions for a vertical point force or a point electric charge, and the boundary conditions on the film/substrate interface, the Green’s functions can be obtained by solving sets of simultaneous linear algebraic equations. The solution of the indentation problem is obtained by integrating these Green’s functions over the contact area with unknown surface tractions or electric charge distribution, which will be determined from the boundary conditions on the contact surface between the indenter and the film. The solution is expressed in terms of dual integral equations that are converted to a Fredholm integral equation of the second kind and solved numerically. Numerical examples are also presented. The comparison between two film/substrate bonding conditions is made. It shows that the indentation rigidity of the film/substrate system is lower when the film is in frictionless contact with the substrate. The effects of the Young’s modulus and Poisson’s ratio of the elastic substrate, indenter electrical condition and indenter prescribed electric potential on the indentation responses are presented.  相似文献   

10.
A phenomenological study of parabolic and spherical indentation of elastic ideally plastic materials was carried out by using precise results of finite elements calculations. The study shows that no “pseudo-Hertzian” regime occurs during spherical indentation. As soon as the yield stress of the indented material is exceeded, a deviation from the, purely elastic Hertzian contact behaviour is found. Two elastic–plastic regimes and two plastic regimes are observed for materials of very large Young modulus to Yield stress ratio, E/σy. The first elastic–plastic regime corresponds to a strong evolution of the indented plastic zone. The first plastic regime corresponds to the commonly called “fully plastic regime”, in which the average indentation pressure is constant and equal to about three times the yield stress of the indented material. In this regime, the contact depth to penetration depth ratio tends toward a constant value, i.e. hc/h = 1.47. hc/h is only constant for very low values of yield strain (σy/E lower than 5 × 10?6) when aE1/y is higher than 10,000. The second plastic regime corresponds to a decrease in the average indentation pressure and to a steeper increase in the pile-up. For materials with very large E/σy ratio, the second plastic regime appears when the value of the non-dimensional contact radius a/R is lower than 0.01. In the case of spherical and parabolic indentation, results show that the first plastic regime exists only for elastic-ideally plastic materials having an E/σy ratio higher than approximately 2.000.  相似文献   

11.
张希润  蔡力勋  陈辉 《力学学报》2020,52(3):787-796
针对超弹性材料压入问题, 本文基于能量密度中值等效原理, 提出了描述球、平面、锥3类压头独立压入下载荷、深度、压头几何尺寸和Mooney-Rivlin本构关系参数之间关系的半解析超弹性压入模型(semi-theoretical hyperelastic-material indentation model, SHIM), 进而提出了球、平面、锥压入组合的双压试验方法(indentation method due to dual indenters, IMDI). 正向验证表明, 基于系列超弹性材料的本构关系参数, 由SHIM分别预测的球、平面、锥3类压入下的载荷-位移曲线与有限元分析(finite element analysis, FEA)结果之间密切吻合; 反向验证表明, 基于系列超弹性材料的FEA条件本构关系下3类压入的载荷-位移曲线, 由双压试验方法预测的Mooney-Rivlin本构关系与FEA条件本构关系密切吻合. 针对3种超弹性橡胶, 完成了球、平面、锥压入试验, 应用双压试验方法获得的3组Mooney-Rivlin本构关系均与单轴拉伸试验结果吻合良好.   相似文献   

12.
Instrumented indentation is a popular technique for determining mechanical properties of materials. Currently, the evaluation techniques of instrumented indentation are mostly limited to a flat substrate being indented by various shaped indenters (e.g., conical or spherical). This work investigates the possibility of extending instrumented indentation to non-flat surfaces. To this end, conical indentation of a sphere is investigated where two methodologies for establishing mechanical properties are explored. In the first approach, a semi-analytical approach is employed to determine the elastic modulus of the sphere utilizing the elastic unloading response (the “unloading slope”). In the second method, reverse analysis based on finite element analysis is used, where non-dimensional characteristic functions derived from the force–displacement response are utilized to determine the elastic modulus and yield strength. To investigate the accuracies of the proposed methodologies, selected numerical experiments have been performed and excellent agreement was obtained.  相似文献   

13.
Spherical indentation approach (Lee et al., 2005, Lee et al., 2010) for the evaluation of bulk material properties is extended to that for elastic–plastic properties of film-on-substrate systems. Our interest focuses on single isotropic, metallic, and elastic–plastic film on a substrate, and we do not consider the size effects in plasticity behavior. We first determine the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. Dimensional analysis affords the mapping parameters as functions of normalized indentation variables. An efficient way is further introduced to reduce both the number of analyses and the regression order of mapping functions. The new numerical approach to the film indentation technique is then proposed by examining the finite element solutions at the optimal point. With the new approach, the values of elastic modulus, yield strength, and strain-hardening exponent of film materials are successfully obtained from the spherical indentation tests. We have shown that the effective property ranges such as indenter properties, substrate modulus, and E/Es ratio can be extended without additional simulations and even loss of accuracy. For other ranges of variables or other properties, which are not dealt with in this study, this methodology is applicable through resetting FEA variables and finding proper normalized parameters.  相似文献   

14.
A study has been made of the elastic and plastic deformation associated with submicrometer indentation of thin films on substrates using the finite element method. The effects of the elastic and plastic properties of both the film and substrate on the hardness of the film/substrate composite are studied by determining the average pressure under the indenter as a function of the indentation depth. Calculations have been made for film/substrate combinations for which the substrate is either harder or softer than the film and for combinations for which the substrate is either stiffer or more compliant than the film. It is found, as expected, that the hardness increases with indentation depth when either the yield strength or the elastic modulus of the substrate is higher than that of the film. Correspondingly, the hardness decreases with indentation depth when the yield strength or elastic modulus of the substrate is lower than that of the film. Functional equations have been developed to predict the hardness variation with depth under these different conditions. Finite element simulation of the unloading portion of the load displacement curve permits a determination of the elastic compliance of the film/substrate composite as a function of indentation depth. The elastic properties of the film can be separated from those of the substrate using this information. The results are in good agreement with King's analytical treatment of this problem.  相似文献   

15.
16.
纳米压入测试可以原位获取材料的诸多力学性能,包括弹性模量,硬度,屈服应力,应变率敏感指数等。本文利用应变率阶跃测试技术对多晶铜试样的应变率敏感性进行测试分析,硬度-位移曲线表明压头下方所存在的变形梯度对各阶跃应变率下的硬度值存在明显影响;采用基于晶体细观机制的塑性应变梯度理论对压入变形梯度效应予以修正,比较了修正与未修正数据所得的应变率敏感指数,在有效剔除压入变形梯度影响的基础上,应变率阶跃测试可实现单次压入下材料应变率敏感性的测试表征。  相似文献   

17.
Numerous experiments have repetitively shown that the material behavior presents effective size dependent mechanical properties at scales of microns or submicrons. In this paper, the size dependent behavior of micropolar theory under conical indentation is studied for different indentation depths and micropolar material parameters. To illustrate the effectiveness of the micropolar theory in predicting the indentation size effect (ISE), an axisymmetric finite element model has been developed for elastoplastic contact analysis of the micropolar materials based on the parametric virtual principle. It is shown that the micropolar parameters contribute to describe the characteristic of ISE at different scales, where the material length scale regulates the rate of hardness change at large indentation depth and the value of micropolar shear module restrains the upper limit of hardness at low indentation depth. The simulation results showed that the indentation loads increase as the result of increased material length scale at any indentation depth, however, the rate of increase is higher for lower indentation depth, relative to conventional continuum. The numerical results are presented for perfectly sharp and rounded tip conical indentations of magnesium oxide and compared with the experimental data for hardness coming from the open literature. It is shown that the satisfactory agreement between the experimental data and the numerical results is obtained, and the better correlation is achieved for the rounded tip indentation compared to the sharp indentation.  相似文献   

18.
Finite element analysis was performed to investigate the indentation response of elasto-plastic solids for conical indenters of half included angles of 60° and 70.3°. The interdependence indentation parameters resulting from a single indentation load–depth curve is considered. Regarding dimensional analysis, several dimensionless relationships are constructed as functions of the reduced elastic modulus-loading curvature ratio E1/C and the strain hardening exponent n. Further, the duality between corresponding parameters with dual indenters is explored. Finally, a new method based on dual indenters is proposed to extract the strain hardening exponent and the reduced elastic modulus of an indented material. The accuracy of this method is verified and discussed with experimental data from the literature and representative materials.  相似文献   

19.
An analytical solution is presented for an internally pressurized thick-walled spherical shell of an elastic strain-hardening plastic material. A strain gradient plasticity theory is used to describe the constitutive behavior of the material undergoing plastic deformations, whereas the generalized Hooke’s law is invoked to represent the material response in the elastic region. The solution gives explicit expressions for the stress, strain and displacement components. The inner radius of the shell enters these expressions not only in non-dimensional forms but also with its own dimensional identity, unlike classical plasticity-based solutions. As a result, the current solution can capture the size effect. The classical plasticity-based solution of the same problem is shown to be a special case of the present solution. Numerical results for the maximum effective stress in the shell wall are also provided to illustrate applications of the newly derived solution. The new solution can be used to construct improved expanding cavity models in indentation mechanics that incorporate both the strain-hardening and indentation size effects.  相似文献   

20.
The local mechanical properties of a weld zone, in a 6061-T6 aluminium alloy subjected to the modified indirect electric arc technique have been studied. The mechanical properties of the base metal, the weld metal and the heat affected zone were determined by means of usual and instrumented indentation testing, as well as micro-traction testing. To analyse the heat input effect resulting from the welding process, the evolution of the weld zone size was evaluated by means of classical indentation under a constant applied load. The results were presented using a Vickers hardness map representation. This allows monitoring exact hardness variation while leading to the identification of the different zones of the welded joint. Instrumented indentation testing was carried out to determine the local mechanical properties, such as the yield stress, the bulk modulus and the strain-hardening exponent. Obtained results are compared to those derived from tensile tests conducted on micro-specimen cuts taken from the weld zone. It was observed that yield stress values are directly comparable for indentation and micro-traction experiments. As for the elastic properties, no comparison was possible since the bulk modulus is measured by indentation, whereas it is the Young’s modulus by tensile test. The micro-traction testing seems to be more sensitive to represent the work hardening of a material since the corresponding exponent is found to be constant by instrumented indentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号