首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apparent molar heat capacities have been determined for aqueous solutions of glycine at temperatures from 352.09 K to 470.63 K and glycylglycine at temperatures from 352.09 K to 423.15 K. Both systems were investigated at a pressure of 10.0 MPa. Measurements were performed with a differential flow calorimeter that is capable of operation at temperatures  > 723 K and pressures to approximately 40.0 MPa. Partial molar heat capacities at infinite dilution have been calculated from apparent molar values and have been corrected for “relaxation" contributions. The reported partial molar heat capacity values for aqueous glycine and glycylglycine solutions have been modelled using the revised Helgeson, Kirkham, and Flowers semi-empirical equations of state. These models for solutions of glycine and glycylglycine in water have been compared with those previously reported in the literature.  相似文献   

2.
The apparent molar volumes of l-alanine, dl-serine, dl-threonine, l-histidine, glycine, and glycylglycine in water and in the aqueous solutions of NaCl and DMSO with various concentrations at T = 298.15 K have been measured by the precise vibrating-tube digital densimeter. The calculated partial molar volumes at infinite dilution have been used to obtain corresponding transfer volumes from water to various solutions. The experimental results show that the standard partial molar volumes of the above amino acids and peptide at the dilute DMSO aqueous solutions are very close to those in water. However, the volumes show several types of variations with the increase of the concentrations of DMSO due to different types of side chain of amino acids, which should be discussed specifically. The NaCl changes considerably the infinite dilution standard partial molar volumes of the above amino acids and peptide in the aqueous solutions. The infinite dilution standard partial molar volumes of the each amino acids and peptide increase with the concentrations of NaCl. The experimental results have been rationalized by a cosphere overlap model.  相似文献   

3.
Densities and heat capacities of aqueous solutions of sodium trifluoromethanesulfonate (sodium triflate) of concentrations from 0.025 to 0.3 mol · kg−1 were measured with high temperature, high pressure custom-made instruments at temperatures up to 573 K and at pressures up to 28 MPa. Standard molar volumes and standard molar heat capacities were obtained via extrapolation of the apparent molar properties to infinite dilution. The results for volumetric properties are consistent with earlier literature data, but no previous measurements exist for heat capacities of sodium triflate at superambient conditions. The new data were used for calculating the standard molar volumes and heat capacities for the triflate anion and compared with the results for triflic acid that should be essentially identical within the expected error margins. At temperatures above 473 K an effort was made to refine the processing of literature data for HCl(aq), taking into account its partial association, and subsequently to modify the value for Na+ ion calculated from the standard thermodynamic values of NaCl(aq) where its ion pairing was already considered. This approach yields reasonable agreement at high temperatures between the values for triflate ion calculated from its salt and those for triflic acid.  相似文献   

4.
The apparent molar volumes Vφ of glycine, alanine, valine, leucine, and lysine have been determined in aqueous solutions of 0.05, 0.5, 1.0 mol · kg−1 sodium dodecyl sulfate (SDS) and 1.0 mol · kg−1 cetyltrimethylammonium bromide (CTAB) by density measurements at T=298.15 K. The apparent molar volumes have also been determined for diglycine and triglycine in 1 mol · kg−1 SDS and CTAB solutions. These data have been used to calculate the infinite dilution apparent molar volumes V20 for the amino acids and peptides in aqueous SDS and CTAB and the standard partial molar volumes of transfer (ΔtrV2,m0) of the amino acids and peptides to these aqueous surfactant solutions. The linear correlation of V20 for a homologous series of amino acids has been utilized to calculate the contribution of the charged end groups (NH3+, COO), CH2 group and other alkyl chains of the amino acids to V20. The results on the partial molar volumes of transfer from water to aqueous SDS and CTAB have been interpreted in terms of ion–ion, ion–polar and hydrophobic–hydrophobic group interactions. The volume of transfer data suggests that ion–ion or ion–hydrophilic group interactions of the amino acids and peptides are stronger with SDS compared to those with CTAB. Comparison of the hydration numbers of amino acids calculated in the present studies with those in other solvents from literature shows that these numbers are almost the same at 1 mol · kg−1 level of the cosolvent/cosolute. Increasing molality of the cosolvent/cosolute beyond 1 mol · kg−1 lowers the hydration number of the amino acids due to increased interactions with the solvent and reduced electrostriction.  相似文献   

5.
Density values for dilute aqueous solutions of five cyclic ethers obtained using the Anton Paar DSA 5000 vibrating-tube densimeter and the laboratory-made flow densimeter are presented together with partial molar volumes at infinite dilution (standard partial molar volumes) calculated from the measured results. The cyclic ethers were either five-members cycles with one or two oxygen atoms (oxolane, 1,3-dioxolane) or six-members cycles with one, two, or three oxygen atoms (oxane, 1,4-dioxane, 1,3,5-trioxane). The measurements were performed at temperatures from T = 278 K up to T = 373 K and at either atmospheric pressure or at p = 0.5 MPa. The group contribution method is proposed and values of group contributions are evaluated. Standard partial molar volumes predicted for several other cyclic ethers including large cycles (crown ethers) are compared with available data from the literature.  相似文献   

6.
Densities and viscosities of urea in (1.0, 2.5, and 5.0) mass% of aqueous glucose solutions have been measured at T = (298.15, 303.15, 308.15, and 313.15) K, respectively. Apparent molar volumes, limiting partial molar volume, and relative viscosity have been obtained from the density and viscosity data. Limiting partial molar expansibilities have also been calculated from the temperature dependence of limiting partial molar volumes. The viscosity data has been analyzed using the Jones–Dole equation. The results are used to establish the nature of solute–solute and solute–solvent interactions. The activation parameters of viscous flow have also been calculated on the basis of transition state treatment of the relative viscosity. Result shows that the solute acts as water structure breaker and posses’ weak solute–solvent interaction.  相似文献   

7.
Densities and viscosities of glucose in (1.0, 2.5, and 5.0) mass% aqueous urea solutions have been measured at T = (298.15, 303.15, 308.15, and 313.15) K, respectively. Apparent molar volumes, limiting partial molar volume, and relative viscosity have been obtained from the density and viscosity results. Limiting partial molar expansibilities have also been calculated from the temperature dependence of limiting partial molar volumes. The viscosity data have been analyzed by using the modified Jones–Dole equation. The results are used to establish the nature of solute–solute and solute–solvent interactions. Transition state treatment of the relative viscosity was also used for the calculation of activation parameters of viscous flow. Pour findings show that the solute acts as a water structure former and provides strong solute–solvent interaction.  相似文献   

8.
Density data for dilute aqueous solutions of four cyclic ketones (cyclopentanone, cyclohexanone, cycloheptanone, and cyclohexane-1,4-dione) are presented together with standard molar volumes (partial molar volumes at infinite dilution) calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K. Experimental pressures were close to the saturated vapor pressure of water, and (15 and 30) MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Experimental standard molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function. Contributions of the molecular structural segments (methylene and carbonyl groups) to the standard molar volume were also evaluated and analyzed.  相似文献   

9.
The densities of {water (1) + tert-butanol (2)} binary mixture were measured over the temperature range (274.15 to 348.15) K at atmospheric pressure using “Anton Paar” digital vibrating-tube densimeter. Density measurements were carried out over the whole concentration range at (308.15 to 348.15) K. The following volume parameters were calculated: excess molar volumes and thermal isobaric expansivities of the mixture, partial molar volumes and partial molar thermal isobaric expansivities of the components. Concentration dependences of excess molar volumes were fitted with Redlich–Kister equation. The results of partial molar volume calculations using four equations were compared. It was established that for low alcohol concentrations at T ? 208 K the inflection points at x2  0.02 were observed at concentration dependences of specific volume. The concentration dependences of partial molar volumes of both water and tert-butanol had extremes at low alcohol content. The temperature dependence of partial molar volumes of water had some inversion at х2  0.65. The temperature dependence of partial molar volumes of tert-butanol at infinite dilution had minimum at ≈288 K. It was discovered that concentration dependences of thermal isobaric expansivities of the mixture at small alcohol content and low temperatures passed through minimum.  相似文献   

10.
Density data for dilute aqueous solutions of two diols (1,6-hexanediol, 2,2-dimethyl-1,3-propanediol) and two polyhydric alcohols (2,2-bis(hydroxymethyl)-1,3-propanediol, 1,2,3,4,5-pentanepentaol) are presented together with partial molar volumes at infinite dilution calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K and at pressure close to the saturated vapour pressure of water, at pressures between 15 and 20 MPa and at p = 30 MPa. While temperature dependences of partial molar volumes of both diols are monotonous, maxima are observed on the curves for polyhydric alcohols. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter.  相似文献   

11.
The apparent specific volumes and isentropic compressibilities have been determined for polyvinylpyrrolidone in aqueous solutions of sodium citrate by density and sound velocity measurements at T = (283.15 to 308.15) K at atmospheric pressure. The results show a positive transfer volume of PVP from an aqueous solution to an aqueous sodium citrate solution. For low concentrations of PVP, the apparent specific volumes of PVP in water increased along with an increase in the polymer mass fraction, while in aqueous sodium citrate solutions decreased along with an increase in the polymer mass fraction. For high concentrations of PVP, the apparent specific volumes of PVP in water and in aqueous sodium citrate solutions were independent of the polymer mass fraction. The apparent specific isentropic compressibility of PVP is negative at T = (283.15 and 288.15) K, which imply that the water molecules around the PVP molecules are less compressible than the water molecules in the bulk solutions. The positive values of apparent specific isentropic compressibility at T = (298.15, 303.15, and 308.15) K imply that the water molecules around the PVP molecules are more compressible than the water molecules in the bulk solutions. Finally, it was found that the apparent specific isentropic compressibility of PVP increases as the concentration of sodium citrate increases.  相似文献   

12.
Density data for dilute aqueous solutions of three butanediols (1,3-butanediol, 2,3-butanediol, 1,4-butanediol) are presented together with partial molar volumes at infinite dilution calculated from the experimental data. The measurements were performed at temperatures from 298.15 K up to 573.15 K and at pressures close to the saturated vapour pressure of water, at pressures close to 20 MPa and 30 MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter.  相似文献   

13.
Density values for dilute aqueous solutions of five cyclic ethers (oxolane, 1,3-dioxolane, oxane, 1,4-dioxane, and 1,3,5-trioxane) are presented together with partial molar volumes at infinite dilution calculated from the experimental results. The measurements were performed at temperatures from (298 up to 573) K. Due to thermal decomposition, the upper temperature limit was lower for 1,3-dioxolane (448 K) and 1,3,5-trioxane (498 K). Experimental pressures were close to the saturated vapour pressure of water, and (15 and 30) MPa. The results were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Experimental standard partial molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function and the semi-theoretical SOCW equation of state. Contributions of the group contribution method proposed previously were also evaluated and analyzed.  相似文献   

14.
Acidified aqueous solutions of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa using a Sodev O2D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01  m/(mol · kg−1)  0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal Vφ,2 and Cpφ,2 values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p=0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature.Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr3+(aq), Gd3+(aq), Ho3+(aq), and Tm3+(aq) were calculated using the conventions V2(H+(aq))  0 and Cp2(H+(aq))  0 and have been compared to other values reported in the literature.  相似文献   

15.
Densities of aqueous solutions of sodium bromide at the molalities (0.09855, 0.49997, and 1.0001)mol · kg  1were determined at 1 K temperature intervals fromT =  278.15 K to T =  338.15 K. The densities were used in the evaluation of the apparent molar volumes, the cubic expansion coefficients, the apparent molar expansibilities and the second derivatives of the volume with respect to temperature. Properties of sodium bromide solutions which were determined in volumetric and calorimetric measurements are discussed and compared.  相似文献   

16.
The densities at T = (293.15, 298.15, 303.15, 308.15, 310.15, and 313.15) K and sound velocities at T = (298.15 and 310.15) K have been measured for pentaerythritol in pure water and in (1, 5, and 10) wt% aqueous solutions of sodium and magnesium chloride. From these data apparent molar volumes, VΦ, and the apparent molar isenotropic compressibilities, KS,Φ, of the polyol have been determined. The limiting apparent molar quantities and corresponding transfer parameters were also obtained and discussed in terms of various solute–solvent and solute–cosolute interactions.  相似文献   

17.
Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan–Mayer theory from the experimental data. For all the systems studied, the dilution of α,ω-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute–solvent and solute–solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.  相似文献   

18.
The densities of tetraphenylphosphonium bromide, sodium tetraphenylborate, lithium perchlorate, sodium perchlorate and lithium bromide in γ-butyrolactone at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and speed of sound at 298.15 K have been measured. From these data apparent molar volumes VΦ at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and the apparent molar isentropic compressibility KS,Φ, at T = 298.15 K of the salts have been determined. The apparent molar volumes and the apparent molar isentropic compressibilities were fitted to the Redlich, Rosenfeld and Mayer equation as well as to the Pitzer and Masson equations yielding infinite dilution data. The obtained limiting values have been used to estimate the ionic data of the standard partial molar volume and the standard partial isentropic compressibility in γ-butyrolactone solutions.  相似文献   

19.
The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C3), hexyl (C6), heptyl (C7), and octyl (C8)) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol · kg?1 were taken. The values of the compressibilities, expansivity and apparent molar properties for [Cnmim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich–Mayer and the Pitzer’s equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute–solvent and solute–solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made.  相似文献   

20.
Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) · 10?3 to 25 · 10?3) mol · kg?1. The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler’s constant. Viscosity results are used to calculate the Jones–Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号