首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of Non》2007,353(16-17):1508-1514
This paper reports on the spectroscopic properties and energy transfer in Ga2O3–Bi2O3–PbO–GeO2 glasses doped with Tm3+ and/or Ho3+. From the optical absorption spectra of Tm3+, Judd–Ofelt intensity parameters, radiative transitions probabilities, fluorescence branching ratios, and radiative lifetimes have been calculated using Judd–Ofelt theory. The measured differential scanning calorimetry result shows that the glass exhibits excellent stability against devitrification with ΔT = 129 °C. The measured luminescence spectra show that the 3H4  3F4 transition of Tm3+ upon 808 nm laser diode excitation possess a broad full width at half-maximum of ∼126 nm. The maximum value calculated stimulated emission cross-section and the measured lifetime of 3H4 level from the 1.47-μm transition are ∼4.73 × 10−21 cm2 and ∼0.239 ms, respectively. It is noticed that codoping of Ho3+ could significantly enhanced the ratio of the intensity of 1.47–1.80 μm by energy transfer via Tm3+: 3F4  Ho3+: 5I7.  相似文献   

2.
Amorphous and nano-crystalline Y3Al5O12:Tb phosphor samples were obtained via a facile combustion method by calcination at various temperatures, using yttrium oxide and aluminum nitrite as starting materials and citric acid as fuel. XRD, FT-IR and TEM results showed that the products were amorphous if prepared at 750 °C, well-crystalline when treated above 850 °C. In addition, partially crystalline YAG phase was observed at 800 °C (in air). The excitation spectra of the samples calcined at 750 °C and 800 °C exhibited some difference in the 230–255 nm range in comparison to those of nano-crystalline YAG:Tb, i.e. an extra band centered at 250 nm was detected via Gaussian curve-fitting. Furthermore, the photoluminescence intensity of as-synthesized samples decreased obviously with increasing the crystallinity under 250 nm excitation. Contrary, it increased monotonously when altering the excitation wavelength to 323 nm. The concentration-dependent emission spectra of samples calcined at 800 °C revealed that the strongest intensity could be obtained with 10% Tb doping. Red-shifts indicated changes of the inter-atomic distances within the Tb3+ coordination polyhedron with increasing Tb concentration. The low temperature photoluminescence of partially crystalline YAG:10% Tb was also investigated, displaying good-resolution but reduced intensity compared to the room-temperature photoluminescence.  相似文献   

3.
《Journal of Non》2007,353(44-46):4102-4107
The Pr3+-doped Y4Al2O9 powders were synthesized by sol–gel method. Powder X-ray diffraction and SEM techniques were used to check for Y4Al2O9 powders. The Li+ co-doping with Pr3+ has an influence on the sintering temperature and morphology of the Y4Al2O9 powders produced from the gel. The emission spectra under different excitations, e.g., the 488 nm line of an argon-ion laser, X-ray and UV light, were investigated. The luminescence intensity of Y4Al2O9:Pr3+ could be increased with Li+ co-doping. Luminescence properties of Pr3+ ions in the two samples have some difference. In the Y4Al2O9:Pr3+, the emission at 490 nm from 3P0 is dominant, while, the Y4Al2O9:(Pr3+ + Li+) system was characterized by a red emission at 607 and 610 nm corresponding to the 1D2  3H4 inner transition of Pr3+ ions; and these two emissions show different excitation band from the 4f5d state.  相似文献   

4.
Glasses in the system MgO/Al2O3/TiO2/ZrO2/SiO2 with and without the addition of As2O3 and Sb2O3 were thermally treated. Up to a temperature of 950 °C, this resulted in the formation of ZrTiO4, sapphirine and high quartz solid solution. Annealing at higher temperatures led to the formation of low quartz solid solutions, ZrTiO4 and sapphirine. This resulted in a continuous increase of density, hardness, fracture toughness and thermal expansivity. In the glass doped with As2O5 and Sb2O5 annealing temperatures >1000 °C resulted in the formation of cristobalite instead of quartz. Then the density, hardness and strength decreased again, while the fracture toughness (up to 2.8 MPa m1/2) and the thermal expansion coefficient increased strongly. In the dilatometric curves, a steep increase in expansion is observed in the temperature range from 100 to 200 °C, which is attributed to the transformation of low cristobalite to high cristobalite. The mean linear thermal expansion coefficient (25–200 °C) is 20 × 10?6 K?1 and the largest up to now reported in the literature for alkali-free silicate glass–ceramics.  相似文献   

5.
《Journal of Non》2006,352(32-35):3642-3646
Energy transfer processes and the related photon diffusion in Nd3+-doped glasses were investigated. A spatially resolved microluminescence technique was used to measure the spatial distribution of the emitted light as a function of Nd3+-ion concentration. The most efficient concentration for long range photon diffusion was determined as a function of emitting wavelengths. Concentrations of 1.1 wt% Nd2O3 at 880 nm, 1.2 wt% at 1060 nm, and 0.9 wt% at 1330 nm were found. An energy transfer process that involves ions randomly distributed throughout the glassy media at the same time acting as sinks and emitters of photons through which the energy is spatially transferred was proposed.  相似文献   

6.
Silica submicron spherical particles coated with an yttrium aluminum garnet (Y3Al5O12, YAG) layer doped with Eu3+ were prepared by the sol–gel method. The structure and morphology of samples determined by the X-ray powder diffraction measurements and transmission electron microscope images, respectively, indicated that well-crystallized garnet nanocrystallites were formed with successive coating cycles. Similar trends were deduced from the evolution of the luminescence spectra. The ratio of integrated intensities of the 5D0  7F2 and 5D0  7F1 transitions was used to analyze the structural variations in the surroundings of the Eu3+ ion. The effect of coating was analyzed by comparing the luminescence properties of the Y3Al5O12:Eu3+ nanocrystalline powders and composite Y3Al5O12:Eu3+/SiO2 materials.  相似文献   

7.
《Journal of Crystal Growth》2003,247(3-4):393-400
Using a highly conductive ZnO(ZnAl2O4) ceramic target, c-axis-oriented transparent conductive ZnO:Al2O3 (ZAO) thin films were prepared on glass sheet substrates by direct current planar magnetron sputtering. The structural, electrical and optical properties of the films (deposited at different temperatures and annealed at 400°C in vacuum) were characterized with several techniques. The experimental results show that the electrical resistivity of films deposited at 320°C is 2.67×10−4 Ω cm and can be further reduced to as low as 1.5×10−4 Ω cm by annealing at 400°C for 2 h in a vacuum pressure of 10−5 Torr. ZAO thin films deposited at room temperature have flaky crystallites with an average grain size of ∼100 nm; however those deposited at 320°C have tetrahedron grains with an average grain size of ∼150 nm. By increasing the deposition temperature or the post-deposition vacuum annealing, the carrier concentration of ZAO thin films increases, and the absorption edge in the transmission spectra shifts toward the shorter wavelength side (blue shift).  相似文献   

8.
《Journal of Non》2007,353(11-12):1070-1077
The structural properties of xCr2O3–(40  x)Fe2O3–60P2O5, 0  x  10 (mol%) glasses have been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The Raman spectra show that the addition of up to 5.3 mol% Cr2O3 does not produce any changes in the glass structure, which consists predominantly of pyrophosphate, Q1, units. This is in accordance with O/P  3.5 for these glasses. The increase in glass density and Tg that occurs with increasing Cr2O3 suggests the strengthening of glass network. The Mössbauer spectra indicate that the Fe2+/Fetot ratio increases from 0.13 to 0.28 with increasing Cr2O3 content up to 5.3 mol%, which can be related to an increase in the melting temperature from 1423 to 1473 K. After annealing, the 10Cr2O3–30Fe2O3–60P2O5 (mol%) sample was partially crystallized and contained crystalline β-CrPO4 and Fe3(P2O7)2. The SEM and AFM micrographs of the partially crystallized sample revealed randomly distributed crystals embedded in a homogeneous glass matrix. EDS analysis indicated that the glass matrix was rich in Fe2O3 (39.6 mol%) and P2O5 (54.9 mol%), but contained only 5.5 mol% of Cr2O3. These results suggest that the maximum solubility of chromium in these iron phosphate melts is 5.5 mol% Cr2O3.  相似文献   

9.
《Journal of Non》2007,353(30-31):2954-2957
The microstructure and electrical properties of Zn–Pr–Co–Cr–Tb oxide-based ceramics were investigated for different Tb4O7 amounts. The increase of Tb4O7 amount led to more densified ceramics, increasing from 5.73 to 5.85 g/cm3 in sintered density. The average grain size decreased from 13.1 to 5.0 μm with the increase of Tb4O7 amount. It increased in the range of 8.9–42.0 in the nonlinear coefficient and in the range of 1026–6514 V/cm in the breakdown field. The highest nonlinear coefficient (42) was obtained for 1.0 mol% Tb4O7. As Tb4O7 amount increased, the donor density decreased in the range of 1.23 × 1018–0.70 × 1018/cm3, whereas the barrier height at grain boundaries increased in the range of 0.73–0.93 eV.  相似文献   

10.
The local structure around neodymium in an aluminoborosilicate glass bearing 3.6 mol% Nd2O3 is studied by optical absorption spectroscopy and EXAFS at the Nd LIII- and K-edges. The influence of the nature of alkalis (M+ = Li+, Na+, K+, Rb+, Cs+) and alkaline-earths (M2+ = Mg2+, Ca2+, Sr2+, Ba2+) on the coordination sphere of Nd3+ ions in the glass is particularly investigated. The Nd3+ sites are well-defined with NdO mean distances of 2.46 ± 0.03 Å, whatever the alkali and alkaline-earth ion type except Li+ and Mg2+, for which glasses exhibit slightly more disordered Nd sites and longer NdO distances (2.49 ± 0.03 Å). Using bond valence considerations, a model is proposed for the Nd site, and consists in 7–8 non-bridging oxygens (NBO), every NBO being charge compensated by 2–3 alkalis and alkaline-earths. The NdO mean distance is adjusted according to the mean field strength of these cations, to avoid overbonding of the NBO’s. A glass series with varying Ca2+/Na+ concentration ratio shows that Nd3+ cations are able to maintain this average coordination site even at high alkaline-earth content.  相似文献   

11.
《Journal of Non》2005,351(40-42):3179-3190
Previous diffraction studies of the structures of rare-earth phosphate glasses (R2O3)x(P2O5)1−x are extended to glasses with smaller R3+ ions with R = Sm, Gd, Dy, Er, Yb, Y for x = ∼0.25 and with R = Nd, Sm, Gd for x = ∼0.15. Parameters for the P–O, R–O and O–O first-neighbor peaks were obtained by Gaussian fitting. P–P and R–P distances were estimated from the positions of peak maxima. Effects of residual silica or alumina contents present as a result of glass processing were taken into account for selected samples. The P–O coordination number, NPO, and the P–O, O–O, P–P distances are consistent with the presence of phosphate tetrahedra and are insensitive to the R species and the R2O3 content. Rare-earth coordination numbers, NRO, decrease from ∼8 to ∼6.5 when x is increased from ∼0.15 to ∼0.25. NOO and NPP decrease with increasing R2O3 content indicating the network disintegration. The numbers NRO of the metaphosphate glasses (x = ∼0.25) decreases from ∼7 to ∼6 when R is changed from La to Yb. This change is also indicated by the behavior of the R–O distances and by constant number densities of atoms. The decrease in NRO with increasing R2O3 content is due to the reduction in the number of terminal O (OT) available for coordination of the R3+ ions (six at metaphosphate composition). Especially for smaller R3+ ions sharing OT between two R sites is not favored. The decrease by ∼0.04 nm of the prominent R–R first-neighbor distance with a change of R from La to Yb at the metaphosphate composition is indicated by a shift to higher magnitude of scattering vector of the shoulder occurring in front of the first main diffraction peak.  相似文献   

12.
Porous glass with high-SiO2 content was impregnated with Nd ions, and subsequently sintered at 1100 °C into a compact non-porous glass in air or reducing atmosphere. Sintering in a reducing atmosphere produced an intense violet–blue fluorescence at 394 nm. However, the sintering atmospheres almost did not affect the fluorescence properties in the infrared range. A good performance Nd3+-doped silica microchip laser operating at 1064 nm was demonstrated. The Nd-doped sintering glasses with high-SiO2 content are potential host materials for high power solid-state lasers and new transparent fluorescence materials.  相似文献   

13.
《Journal of Non》2007,353(18-21):1951-1955
A study of the Nd3+  Yb3 energy transfer processes in transparent oxyfluoride glass ceramics has been carried out as a function of temperature in the 100–700 K range. This host is a two-phase optical material that consists of a low-phonon energy fluoride nanocrystalline phase embedded in a predominantly aluminosilicate glassy medium and has shown to be an interesting matrix for rare earth ions. Luminescence decay curves of single Nd3+ and Yb3+ doped and co-doped samples at different temperatures have been analyzed in order to calculate the energy transfer and backtransfer rates between these ions. Finally, the results have been also investigated to known the phonons involved in the energy transfer processes, concluding at the end that the Nd3+  Yb3+ energy transfer rate takes place by the emission of three phonons with energy around 325 cm−1 and in the other hand, Nd3+  Yb3+ energy transfer rate has been found to be non-negligible for temperatures over 370 K with the requirement of absorption of phonons.  相似文献   

14.
《Journal of Non》2007,353(13-15):1402-1406
Fluorophosphate glasses of composition P2O5–K2O–MgO–Al2O3–AlF3 and P2O5–K2O–MgO–Al2O3–BaF2 were prepared with different Nd3+ ion concentrations. The absorption and emission spectra in the UV–VIS–NIR region were measured for these glasses. Judd–Ofelt analysis has been carried out using the absorption spectra of 1.0 mol% Nd3+-doped glasses to evaluate the radiative properties for some luminescent levels of the Nd3+ ion. The stimulated emission cross-sections of the 4F3/2  4I11/2 laser transition for the present glasses are found to be higher than for other Nd3+-doped glasses. Branching ratio calculations also revealed the potentiality of the 4F3/2  4I11/2 transition for laser action in these glasses. The observed concentration quenching of the lifetime of the 4F3/2 level is explained as a result of cross-relaxation process between the Nd3+ ions.  相似文献   

15.
Mechanisms of the compositional dependence of blue emission from Nd3+/Tm3+ co-doped Ge–Ga–S–CsBr chalcohalide glasses were investigated. The blue upconversion emissions (centered at 475 nm) due to the Tm3+: 1G4  3H6 transition decreased as the CsBr/Ga ratio in glasses while the other upconversion emissions from the Nd3+ ions increased. Changes in the local environment of rare-earth ions incurred by the CsBr addition significantly increased the excited state absorption within Nd3+ ions. This resulted in the decrease in the Nd3+  Tm3+ energy transfer rates that led to the large decrease in blue upconversion emission.  相似文献   

16.
In this paper, Tb3+/Sm3+ co-doped 38B2O3―31Al2O3―31SrO glass was successfully prepared. After heat treatment, single crystal phase SrAl2B2O7 was precipitated from the parent glass. DTA data showed the glass transition temperature at 625 °C and a sharp exothermic peak at 860 °C. XRD patterns demonstrated a regular evolution from glass to glass ceramics with higher treatment temperature and longer treatment time. From the XRD patterns, we supposed that Tb3+/Sm3+ ions can be most likely contained in the crystal phase. The photoluminescence spectra showed that the crystallization can enhance the emission intensity significantly and there could be an optimum crystallization degree to get the strongest luminescence in glass ceramics. The light scattering of devitrification sample can vary the intensity ratio of Sm3+ and Tb3+ emission. Therefore, as a potential route, rare earth ions doped glass ceramics could be a further research direction of luminescence glasses for white light emitting diodes application.  相似文献   

17.
The glass forming ability and magnetic properties of Nd5Fe68 ? xB23Mo4Yx (x = 0, 2, 4, 6) alloys prepared by copper mold casting technique have been studied. Amorphous rods with a diameter of 2 mm were obtained in the Nd5Fe64B23Mo4Y4 alloy. After annealing for 10 min at 1013 K, the Nd5Fe64B23Mo4Y4 alloy showed optimal hard magnetic properties with the coercivity of 764.2 kA/m, remanence of 0.6 T and maximum energy product of 57.3 kJ/m3, respectively. The enhanced magnetic properties can be ascribed to the strong exchange coupling among the magnetically soft α-Fe (25–30 nm), Fe3B (30–35 nm) and hard Nd2Fe14B (40–50 nm) grains present in the magnet microstructure. Large size bulk nanocomposite magnets with sound magnetic properties make the Nd–Fe–B–Mo–Y alloy system a promising candidate for industrial applications.  相似文献   

18.
《Journal of Non》2006,352(50-51):5296-5300
In this work, we present the synthetic route and the optical characterization of poly(styrene sulfonate) (PSS) films doped with Neodymium ions (Nd3+). In the synthesis optimization we obtained the maximum incorporation of Nd3+ in the matrix about 14.0%. The UV–Vis–NIR curve presents an intense characteristic electronic transition 4I9/2  4F5/2 + 2H9/2 at 800 nm. It was also shown the radiative transition 4F3/2  4I11/2 at about 1060 nm. Judd–Ofelt theory was used in order to obtain the near infrared Nd3+ radiative transition rate, emission cross-section and radiative lifetime.  相似文献   

19.
The luminescence behavior of composite materials consisting of nanocrystals of Y3?xAl5O12:Tb (YAG:Tb3+) embedded into silica xerogel has been studied. Blue and green luminescence of the materials is due to a cross-relaxation effect in Tb3+ ions doped into a YAG lattice. The materials with YAG:Tb3+ nanocrystals immobilized in silica exhibit enhancement of Tb3+ luminescence in comparison with the macrocrystalline YAG:Tb3+ powder. The Tb3+ luminescence intensity of a composite material dried at room temperature can be improved when higher aliphatic alcohols are applied in a one-pot procedure during a sol–gel synthesis. On the other hand, the Tb3+ luminescence is quenched in the presence of Ag nanoparticles in the material. The composite material (YAG:Tb3+ in silica) exhibits thermal stability at higher temperatures and achieves the highest emission intensity after having been annealed at 700 °C.  相似文献   

20.
《Journal of Non》2006,352(30-31):3224-3229
We present spectroscopic results of PbO–Bi2O3–Ga2O3–BaO glass doped with different concentration of Nd2O3. These glasses have high refractive index (∼2.4) and large spectral transmission window. Measurements of absorption, emission and fluorescence lifetime are presented. From the calculations of the Judd–Ofelt parameters the radiative lifetimes, branching ratios and quantum efficiency of 4F3/2 level are calculated. The highest emission intensity was measured for the sample doped with 0.5 wt% of Nd2O3 with emission cross-section of 2.6 × 10−20 cm2, at 1069 nm, fluorescence lifetime of 110 μs, quantum efficiency of 82% and effective linewidth of 34 nm. The results point out this glass system as good candidate to be used in the development of photonic devices operating in the near infrared spectral range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号