共查询到20条相似文献,搜索用时 15 毫秒
1.
The standard (po = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for the liquids 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine were determined by static bomb combustion calorimetry. The standard molar enthalpies of vaporization, at T = 298.15 K, were measured by Calvet microcalorimetry. The standard (po = 0.1 MPa) molar enthalpies of formation of the three compounds studied, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization, yielding ((−42.7 ± 1.9), (−18.2 ± 1.8) and (−233.5 ± 1.8)) kJ · mol−1, for 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine, respectively. 相似文献
2.
《The Journal of chemical thermodynamics》2002,34(11):1777-1785
The molar enthalpies of reaction of metallic barium with 0.047 mol·dm−3 HClO4 as well as the molar enthalpies of dissolution of BaCl2 in 1.01 mol·dm−3 HCl and in water have been measured at T=298.15 K in a sealed swinging calorimeter with an isothermal jacket. From these results the standard molar enthalpy of formation of the barium ion in an aqueous solution at infinite dilution, as well as the enthalpies of formation of barium chloride and barium perchlorate, are calculated to be: ΔfH0m(Ba2+,aq)=−(535.83±1.25) kJ · mol−1; ΔfH0m(BaCl2,cr)=−(855.66±1.28) kJ · mol−1; and ΔfH0m(BaClO4,cr)=−(796.26±1.35) kJ · mol−1. The results obtained are discussed and compared with previous experimental values. 相似文献
3.
Sh. B. Kasenova Zh. K. Tukhmetova A. Zh. Abil’daeva I. M. Oskembekov B. K. Kasenov S. M. Adekenov S. D. Fazylov 《Russian Journal of Applied Chemistry》2008,81(12):2141-2144
The enthalpies of solution of cytisine derivatives (phosphoric acid cytiside dimethyl ester, cytisinovinyloxyethylaminothiourea) in 96% ethanol at various dilutions were determined by isothermal calorimetry. Equations describing the dependences ΔH s 0 = f(m 1/2) (m is the molal concentration) were obtained. The standard enthalpies of solution, combustion, melting, and formation (at 298.15 K) of the compounds were calculated. 相似文献
4.
Solid complexes of M(His)2Cl2·nH2O (M=Mn, Co, Ni, Cu) of MnCl2·6H2O, CoCl2·6H2O, NiCl2·6H2O, CuCl2·2H2O and L-α-histidine (His) have been prepared in 95% ethanol solution and characterized by elemental analyses, chemical analyses,
IR and TG-DTG. The constant-volume combustion energies of the complexes have been determined by a rotating-bomb calorimeter.
And the standard enthalpies of formation of the complexes have been calculated as well.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
5.
The adducts [MBr2(pipd) n ] (where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), or Zn(II); pipd = piperidine; n = 1/2, 1, or 3/4) were synthesized and characterized by melting points, elemental analysis, thermal studies, and IR and electronic spectroscopy. From calorimetric studies in solution, the standard enthalpies of formation and several other thermochemical parameters of them were determined. The mean standard enthalpies of the metal–nitrogen bonds were calculated, as well as the enthalpies of the adduct formation in the gaseous phase. Using the values obtained for the enthalpies of reaction, the acidity order of the salts is obtained: FeBr2 > MnBr2 and CoBr2 > NiBr2. Comparing with pyridine adducts, the ligand piperidine is more basic than the ligand pyridine: pipd > py. 相似文献
6.
Pedro Oliver Dunstan 《Thermochimica Acta》2006,441(1):1-7
The compounds [MBr2(an)2] (where M is Mn(II), Fe(II), Co(II), Ni(II), Cu(II) or Zn(II); an = aniline) were synthesized and characterized by melting points, elemental analysis, thermal studies, and electronic and IR spectroscopy. The enthalpies of dissolution of the adducts, metal(II) bromides and aniline in methanol, aqueous 1.2 M HCl or 25% (v/v) aqueous 1.2 M HCl in methanol were measured. The following thermochemical parameters for the adducts have been determined by thermochemical cycles: the standard enthalpies for the Lewis acid/base reactions (ΔrH°), the standard enthalpies of formation (ΔfH°), the standard enthalpies of decomposition (ΔDH°), the lattice standard enthalpies (ΔMH°) and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase (ΔrH°(g)). The mean bond dissociation enthalpies of the M(II)-nitrogen bonds () and the enthalpies of formation of the adducts from the ions in the gaseous phase: M2+(g) + Br−(g) + an(g) → [MBr2(an)2](g), (ΔfiH°) have been estimated. 相似文献
7.
The thermal decomposition in air of several complexes of chromium(III) with imidazole,N-methylimidazole and 2-methylimidazole has been studied with the aid of differential thermal analysis (DTA), thermogravimetry (TG) and derivative thermogravimetry (DTG) in the temperature range 25–600°C. Although the final process of the decomposition gives Cr2O3, there are interesting differences in the complete process of decomposition. The reasons for these differences appear to be related to the trans-effect and to the presence in the imidazole complexes of hydrogen bonds. Enthalpies of the several decomposition reactions have been determined by differential thermal analysis. 相似文献
8.
Pedro Oliver Dunstan 《Thermochimica Acta》2007,456(1):32-37
The compounds [MBr2(py)2] (where M is Mn(II), Co(II), Ni(II), Cu(II) or Zn(II); py = pyridine) were synthesized and characterized by melting points, elemental analysis, thermal analysis and electronic and IR spectroscopy. The enthalpies of dissolution of the adducts, metal(II) bromides and pyridine in 25% (v/v) 1.2 M aqueous HCl in methanol were measured and by using thermochemical cycles, the following thermochemical parameters for the adducts have been determined: the standard enthalpies for the Lewis acid/base reactions (ΔrHθ), the standard enthalpies of formation (ΔfHθ), the standard enthalpies of decomposition (ΔDHθ), the lattice standard enthalpies (ΔMHθ) and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase (ΔrHθ(g)). The mean bond dissociation enthalpies of the M(II)-nitrogen bonds have been estimated as well as the enthalpies of the adducts formation in the gaseous phase. 相似文献
9.
The compounds [MBr2(p-clan)2] (where M is Mn(II), Fe(II), Co(II), Ni(II), Cu(II) or Zn(II); p-clan = 4-chloroaniline) were synthesized and characterized by melting points, elemental analysis, thermal analysis and electronic and IR spectroscopy. The enthalpies of solution of the adducts, metal(II) bromides and 4-chloroaniline in methanol, 1.2 M aqueous HCl or 25% (v/v) 1.2 M aqueous HCl in methanol were measures and by using thermochemical cycles, the following thermochemical parameters for the adducts have been determined: the standard enthalpies for the Lewis acid/base reactions (ΔrH°), the standard enthalpies of formation (ΔfH°), the standard enthalpies of decomposition (ΔDH°), the lattice standard enthalpies (ΔMH°) and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase (ΔrH°(g)). The mean bond dissociation enthalpies of the metal(II)-nitrogen coordinated bonds and the enthalpies of adduct formation in the gaseous phase have been estimated. 相似文献
10.
Duan S Turk J Speigle J Corbin J Masnovi J Baker RJ 《The Journal of organic chemistry》2000,65(10):3005-3009
Halogenation of dibenz[a,c]anthracene (1) by NBS in CCl(4) affords the products of 9- and 10-monobromination in the ratio of 9:1. The reaction is accelerated by iodine, and HBr effects rearrangement of 9-bromo product to the sterically less crowded 10-bromo isomer. The mechanism is proposed to involve reversible addition of Br(2), followed by elimination of HBr. Reaction of NCS with 1 in CCl(4) requires addition of HCl and affords exclusively 9-chlorination. The different reactivities of NBS and NCS are ascribed to the relative amounts of free halogen produced (due to differences in N-X bond strengths involving Br and Cl), and the different sizes of the halogens. Under similar conditions, NCS chlorinates 9-bromoanthracene (2a) to afford 9,10-dichloroanthracene and 9-bromo-10-chloroanthracene in the ratio of 65:35. This reaction ostensibly occurs by addition of Cl(2) to 2a, followed by preferential loss of HBr rather than HCl. 9-Methylanthracene (3) affords exclusively 9-(bromomethyl)anthracene with NBS in the absence of iodine, but mainly (67%) 9-bromo-10-methylanthracene in the presence of iodine. Chlorination of 3 with NCS in the presence of HCl also affords mostly (65%) nuclear halogenation. Nuclear bromination of anthracene, 9-methylanthracene, and dibenz[a, c]anthracene by NBS in the absence of added HBr is accelerated by iodine. This effect is probably due to an increase in the amount of bromine produced from NBS in the presence of iodine. 相似文献
11.
12.
P. O. Dunstan 《Journal of Thermal Analysis and Calorimetry》2009,97(2):755-760
The [InCl3(L)
n
] (where L is 2,2′-bipyridine (bipy), 2,2′-bipyridine N,N′-dioxide (bipyNO), N,N-dimethylacetamide (dma), urea (u), thiourea (tu) or 1,1,3,3-tetramethylthiourea (tmtu); n = 1.5, 3 or 4) were synthesized and characterized by melting points, elemental analysis, thermal analysis and IR spectroscopy.
The enthalpies of dissolution of the adducts, Indium(III) chloride and ligands in 1.2 M aqueous HCl were measured and by using
thermochemical cycles, the following thermochemical parameters for the adducts have been determined: the standard enthalpies
for the Lewis acid/base reactions (Δr
H
θ), the standard enthalpies of formation (Δf
H
θ), the lattice standard enthalpies (ΔM
H
θ), and the standard enthalpies of decomposition (ΔD
H
θ). 相似文献
13.
K Naoda H Mori N Aratani BS Lee D Kim A Osuka 《Angewandte Chemie (International ed. in English)》2012,51(39):9856-9859
Gold standard: A bis(Au(III) ) complex containing the title compound was prepared and characterized (see scheme; DDQ=2,3-dichloro-5,6-dicyano-1,4-benzoquinone, Tf=trifluoromethanesulfonyl). Owing to the effective conjugative network over the flat and elongated rectangular molecular frame, this complex displays a remarkably red-shifted and sharp Q-band-like band at 1467?nm, multiple reversible redox potentials, and a large TPA cross-section value. 相似文献
14.
A facile strategy to construct microsheets assembled from 9-substituted anthracene-pyridinium compounds (APs) has been developed. With the different length of linkers, APs could form the ‘v’-shaped dimer or ‘face-to-face’ dimer, respectively, driven by CH–π interactions and π-stacking interactions, which consequently lead to the assembly of final microsheets. 相似文献
15.
Takhistov V. V. Ponomarev D. A. Golovin A. V. 《Russian Journal of General Chemistry》2003,73(11):1774-1776
A new value, -100±10 kJ mol-
1, was obtained for the enthalpy of formation of gaseous ketene, H
f
0(g)(CH2 = C = O), from the data obtained by the authors in combination with certain published experimental and calculation data. The suggested value is considerably lower than the value accepted in the literature, -48 kJ mol-
1. 相似文献
16.
17.
Pedro Oliver Dunstan 《Thermochimica Acta》2004,409(1):19-24
The compounds [MBr2(pyNO)n] (where M: Mn, Fe, Co, Ni, Cu or Zn; pyNO is pyridine N-oxide and n=2, 3 or 6) were synthesized and characterized by melting points, elemental analysis, thermal analysis and electronic and IR spectroscopy. The enthalpies of dissolution of the adducts, metal(II) bromides and pyNo in methanol were measured and by using thermochemical cycles, the following thermochemical parameters for the adducts have been determined: the standard enthalpies for the Lewis acid/base reactions (ΔrHθ), the standard enthalpies of formation (ΔfHθ), the standard enthalpies of decomposition (ΔDHθ), the lattice standard enthalpies (ΔMHθ) and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase (ΔrHθ(g)). The mean bond dissociation enthalpies of the M(II)-oxygen bonds () have been estimated. 相似文献
18.
Ricardo Picciochi Hermínio P. Diogo Manuel E. Minas da Piedade 《Journal of Thermal Analysis and Calorimetry》2010,100(2):391-401
Combustion calorimetry, Calvet-drop sublimation calorimetry, and the Knudsen effusion method were used to determine the standard
(p
o = 0.1 MPa) molar enthalpies of formation of monoclinic (form I) and gaseous paracetamol, at T = 298.15 K:
\Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) = - ( 4 10.4 ±1. 3)\text kJ \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) = - ( 4 10.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and
\Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) = - ( 2 80.5 ±1. 9)\text kJ \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) = - ( 2 80.5 \pm 1. 9){\text{ kJ}}\;{\text{mol}}^{ - 1} . From the obtained
\Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) value and published data, it was also possible to derive the standard molar enthalpies of formation of the two other known
polymorphs of paracetamol (forms II and III), at 298.15 K:
\Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crII ) = - ( 40 8.4 ±1. 3)\text kJ \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crII}}} \right) = - ( 40 8.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and
\Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crIII ) = - ( 40 7.4 ±1. 3)\text kJ \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crIII}}} \right) = - ( 40 7.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} . The proposed
\Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) value, together with the experimental enthalpies of formation of acetophenone and 4′-hydroxyacetophenone, taken from the
literature, and a re-evaluated enthalpy of formation of acetanilide,
\Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textON,\text g ) = - ( 10 9. 2 ± 2. 2)\text kJ \textmol - 1 , \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{ON}},{\text{ g}}} \right) = - ( 10 9. 2\,\pm\,2. 2){\text{ kJ}}\;{\text{mol}}^{ - 1} , were used to assess the predictions of the B3LYP/cc-pVTZ and CBS-QB3 methods for the enthalpy of a isodesmic and isogyric
reaction involving those species. This test supported the reliability of the theoretical methods, and indicated a good thermodynamic
consistency between the
\Updelta\textf H\textm\texto \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} (C8H9O2N, g) value obtained in this study and the remaining experimental data used in the
\Updelta\textr H\textm\texto \Updelta_{\text{r}} H_{\text{m}}^{\text{o}} calculation. It also led to the conclusion that the presently recommended enthalpy of formation of gaseous acetanilide in
Cox and Pilcher and Pedley’s compilations should be corrected by ~20 kJ mol−1. 相似文献
19.
Thermochemical reactions occurring in various stages of structural transformations of native lignin in its thermal treatment
in a wide temperature range are considered and classified. Attention is given to the initial state of lignin in its primary
isolation without heating. The terminology of lignin products, used in the literature, is put in order to a certain extent.
The thermochemical reactions in which lignins are transformed in processing of raw wood materials and the structure of isolated
lignins undergoes changes in the course of the target thermal treatment are differentiated. The applied aspect of the directed
thermochemical synthesis of new lignin-based low- and high-molecular-mass compounds is discussed. 相似文献
20.
Raymond N. Rogers 《Thermochimica Acta》1975,11(2):131-139
The kinetics constants for the decomposition reaction of an explosive can be used to calculate the lowest temperature (critical temperature, Tm) at which any specific size and shape of explosive can self heat to explosion; however, the accuracy of the calculation is in doubt without an independent experimental determination of a critical temperature for a known size and shape of the explosive. A method is presented for the experimental determination of critical temperatures on a routine basis, and it is shown that agreement between calculated and experimental values is excellent for most common explosives. 相似文献