首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Thermal post-buckling analysis is presented for a simply supported, composite laminated plate subjected to uniform or non-uniform tent-like temperature loading. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the Reddy's higher-order shear deformation plate theory, and include thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine thermal buckling loads and post-buckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, antisymmetrically angle-ply and symmetrically cross-ply laminated plates. The effects played by transverse shear deformation, thermal load ratio, plate aspect ratio, total number of plies, fiber orientation and initial geometrical imperfections are studied. Typical results are presented in dimensionless graphical form.  相似文献   

2.
The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes (SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection, geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate.  相似文献   

3.
A postbuckling analysis is presented for a simply supported, shear deformable functionally graded plate with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be of uniform distribution over the plate surface and through the plate thickness and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-plane boundary conditions are considered. A two step perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, geometrically mid-plane symmetric FGM plates with fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The effects played by temperature rise, volume fraction distribution, applied voltage, the character of in-plane boundary conditions, as well as initial geometric imperfections are studied.  相似文献   

4.
ABSTRACT

A postbuckling analysis is presented for a moderately thick rectangular plate subjected to combined axial compression and uniform temperature loading, and resting on a softening nonlinear elastic foundation. The cases of (1) thermal postbuckling of initially compressed plates and (2) compressive post-buckling of initially heated plates are considered. The initial geometrical imperfections of the plates are taken into account. Formulations are based on Reissner-Mindlin plate theory, considering first-order shear deformation effects, and including plate-foundation interaction and thermal effects. The analysis uses a deflection-type perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples include the performance of perfect and imperfect, moderately thick plates resting on softening nonlinear elastic foundations. Typical results are presented in dimensionless graphical form.  相似文献   

5.
Post-buckling behaviour of sandwich plates with functionally graded material (FGM) face sheets under uniform temperature rise loading is considered. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation, which acts in both compression and tension. The derivation of equations is based on the first-order shear deformation plate theory. Thermomechanical non-homogeneous properties of FGM layers vary smoothly by the distribution of power law across the thickness, and temperature dependency of material constituents is taken into account. Using the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect sandwich plates with FGM face sheets are derived. The boundary conditions for the plate are assumed to be simply supported in all edges. The governing equations are reduced to two coupled equation in terms of stress function and lateral deflection. Employing the single mode approach combined with Galerkin technique, an approximate closed-form solution is presented to calculate the critical buckling temperature and post-buckling equilibrium path of the plate. Presented numerical examples contain the influences of power law index, sandwich plate geometry, geometrical imperfection, temperature dependency, and the elastic foundation coefficients.  相似文献   

6.
钢衬壳热屈曲问题是核工程安全壳设计中的主要问题把铆固之间的钢衬壳视为钢衬板的特殊缺陷形式,利用Koiter初始后屈曲理论分析了完善和具有初始缺陷钢衬壳的弹性热后屈曲性态给出了用挠度-温度载荷表示的钢衬壳的后屈曲平衡路径表达式和屈曲临界载荷表达式具体分析了三种钢衬壳模型:四点铆固钢衬壳、四边固支钢衬壳和五点铆固钢衬壳给出了钢衬的初始缺陷、锚钉间距、钢衬厚度等参数对钢衬热屈曲载荷的影响结果对安全壳中钢衬壳的设计有很好的参考价值  相似文献   

7.
This paper presents thermo-mechanical post-buckling analysis of cylindrical panels that are made of functionally graded materials (FGMs) with temperature-dependent thermo-elastic properties that are graded in the direction of thickness according to a simple power law distribution in terms of the volume fractions of the constituents. The panel is initially stressed by an axial load, and is then subjected to a uniform temperature change. The theoretical formulations are based on the classical shell theory with von-Karman–Donnell-type nonlinearity. The effect of initial geometric imperfection is also included. A differential quadrature (DQ) based semi-analytical method combined with an iteration process is employed to predict the critical buckling load (where it is applicable) and to trace the post-buckling equilibrium path of FGM cylindrical panels under thermo-mechanical loading. Numerical results are presented for panels with silicon nitride and nickel as the ceramic and metal constituents. The effects of temperature-dependent properties, volume fraction index, axial load, initial imperfection, panel geometry and boundary conditions on the thermo-mechanical post-buckling behavior are evaluated in detail through parametric studies.  相似文献   

8.
While studies of post-buckling behavior and load-carrying capacities of thin plates subjected to uniaxial compression have been limited to stable conditions, further post-buckling loading generates an unstable condition. The secondary buckling which occurs with snap-through to higher-order deflections under such unstable conditions has not been analyzed in detail as yet. In the first part of this paper, a thin square plate under uniaxial compression, which is simply supported along four edges, is considered. A method based on the second variation of the total potential energy is then proposed for evaluating the stability of the post-buckling equilibrium state and inevitable secondary buckling is derived analytically. The effects of various factors, such as initial imperfections, assumed virtual displacement pattern, post-buckling deflection pattern and in-plane boundary conditions, on the secondary buckling values are discussed. In part 2, secondary buckling of clamped plates is analyzed by use of the finite element method and the resultant numerical results are compared with experimental results.  相似文献   

9.
ANANALYSISOFTHEPOST-BUCKLINGOFLAMINATEDPLATESOFSYMMETRICCROSS-PLYWengZongyi(翁宗诒)(ReceivedMarch6,1995,CommunicatedbyZhouChengt...  相似文献   

10.
In this article, post-buckling and non-linear bending analysis of functionally graded annular sector plates based on three dimensional theory of elasticity in conjunction with non-linear Green strain tensor is considered. In-plane normal compressive loads have been applied to either radial, circumferential, or all edges of annular sector plates. Material properties are graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents while Poisson׳s ratio is assumed to be constant. The governing equations are developed based on the principle of minimum total potential energy and solved based on graded finite element method. Non-linear equilibrium equations are solved based on iterative Newton–Raphson method. The effects of material gradient exponent, different sector angles, thickness ratio, loading condition and two different boundary conditions on the post-buckling behavior of FGM annular sector plates have been investigated. Results denote that due to the stretching–bending coupling effects of the FGMs, the post-buckling behavior of movable simply supported FGM plates is not of the bifurcation-type buckling. Moreover, FGM annular sector plates subjected to uniaxial compression at radial edges show a non-linear bending behavior with unique and stable equilibrium paths following a flattening feature.  相似文献   

11.
Thermal buckling analysis of rectangular functionally graded plates (FGPs) with geometrical imperfections is presented in this paper. The equilibrium, stability, and compatibility equations of an imperfect functionally graded plate are derived using the classical plate theory. It is assumed that the nonhomogeneous mechanical properties of the plate, graded through thickness, are described by a power function of the thickness variable. The plate is assumed to be under three types of thermal loading as uniform temperature rise, nonlinear temperature rise through the thickness, and axial temperature rise. Resulting equations are employed to obtain the closed-form solutions for the critical buckling temperature change of an imperfect FGP. The results are reduced and compared with the results of perfect functionally graded and imperfect isotropic plates.  相似文献   

12.
Based on the elasto-plastic theory, considering the effect of spherical stress tensor on the elasto-plastic deformation and using the slicing treatment to deal with the plasticity of functionally graded coatings, the elasto-plastic increment constitutive equations of the sandwich plates with functionally graded metal-metal face sheets can be derived. Applying the weak bonded theory to the interfacial constitutive relation and taking into account the geometric nonlinearity, the nonlinear increment differential equilibrium equations of the sandwich plates with functionally graded metal-metal face sheets are obtained by the minimum potential energy principle. The finite difference method and the iterative method are used to obtain the post-buckling path. When the effect of geometrical nonlinearity of the plate is ignored, the elasto-plastic critical buckling load of the sandwich plates with functionally graded metal-metal face sheets can be solved by the Galerkin method and the iterative method. In the numerical examples, the effects of the interface damages, the induced load ratio, the functionally graded index, and the geometry parameters on the elasto-plastic post-buckling path and the elasto-plastic critical buckling load are investigated.  相似文献   

13.
The behavior of an annular plate, free at its inner edge and simply supported at the outer one, is investigated experimentally. The loading is a compressive implane force which is uniformly applied at the outer boundary. Deformations and strains are explored over sub, trans and postbuckling regions. Experimental results for the buckling loads, obtained by different methods, are compared. Comparison is also made with existing theoretical data. Fair to good agreement is found between theory and experiments, especially with respect to circumferential strains. The important influence that initial geometrical imperfections can have on the behavior of the compressed plate is also discussed.  相似文献   

14.
本文研究了热环境中陶瓷-金属-陶瓷功能梯度圆板(S-FGM)的过屈曲和弯曲行为。圆板材料组分的体积分数符合Sigmoid定律,并承受沿圆板厚度方向变化的温度场作用。基于经典板理论,用能量法导出了对称S-FGM圆板静态问题的非线性平衡方程。用打靶法对所得方程进行了数值求解,并利用数值结果研究了不同边界条件、材料的组分、热载荷等因素对对称S-FGM圆板力学行为的影响。数值结果表明:对称S-FGM圆板相较于普通FGM圆板,其力学行为存在一些不同之处,且板的上下表面温升比对S型功能梯度圆板的力学行为有着显著的影响。  相似文献   

15.
受圆形表面单面约束的点锚固圆环热屈曲分析   总被引:1,自引:0,他引:1  
应用W.T.Koiter的初始后屈曲理论,研究了受圆形混凝土表面单面约束的点锚固圆环的热屈曲问题,根据混凝土容器壁的几何约束条件,假设了圆环的合理屈曲模状,得出了圆环在两锚固点之间发生屈曲的临界温度,并研究了其后屈曲性态和缺陷敏感性。结果表明,临界点和后屈曲路径的平衡均为稳定的,圆环对于与屈曲模态形状相同的缺陷是不敏感的。  相似文献   

16.
The mechanism of imperfection sensitivity of elastic-plastic plates under compression is complex as they undergo elastic and/or plastic buckling, dependent on their width-thickness ratio. For elastic buckling, the Koiter power law is an established means to describe the imperfection sensitivity. Yet, for plastic buckling, there is no such an established way to describe it. In this paper, the quadratic power law is advanced to describe imperfection-insensitive plastic buckling behavior. The Koiter power law is extended by implementing the quadratic law so as to describe the elastic and plastic buckling in a synthetic manner. The finite-displacement, elastic-plastic analysis was conducted on simply-supported square plates under compression by varying the plate thickness and the initial deflection of a sinusoidal form. In association with an increase of the plate slenderness parameter (decrease of plate thickness), the predominant buckling is shown to change from (1) plastic buckling to (2) unstable elastic-plastic buckling and to (3) elastic stable bifurcation followed by a maximum point of load. In accordance with the change of the mechanism of buckling, the power law is changed pertinently to describe the complex imperfection sensitivity of the compression plates in a synthetic manner. The extended imperfection sensitivity law is thus advanced as a simple and strong tool to describe the ultimate buckling strength of elastic-plastic plates.  相似文献   

17.
Large deflection and postbuckling responses of functionally graded rectangular plates under transverse and in-plane loads are investigated by using a semi-analytical approach. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The plate is assumed to be clamped on two opposite edges and the remaining two edges may be simply supported or clamped or may have elastic rotational edge constraints. The formulations are based on the classical plate theory, accounting for the plate-foundation interaction effects by a two-parameter model (Pasternak-type), from which Winkler elastic foundation can be treated as a limiting case. A perturbation technique in conjunction with one-dimensional differential quadrature approximation and Galerkin procedure are employed in the present analysis. The numerical illustrations concern the large deflection and postbuckling behavior of functional graded plates with two pairs of constituent materials. Effects played by volume fraction, the character of boundary conditions, plate aspect ratio, foundation stiffness, initial compressive stress as well as initial transverse pressure are studied.  相似文献   

18.
This paper presents an investigation on the nonlinear dynamic response of carbon nanotube-reinforced composite (CNTRC) plates resting on elastic foundations in thermal environments. Two configurations, i.e., single-layer CNTRC plate and three-layer plate that is composed of a homogeneous core layer and two CNTRC surface sheets, are considered. The single-walled carbon nanotube (SWCNT) reinforcement is either uniformly distributed (UD) or functionally graded (FG) in the thickness direction. The material properties of FG-CNTRC plates are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The motion equations are based on a higher-order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. The equations of motion that includes plate-foundation interaction are solved by a two-step perturbation technique. Two cases of the in-plane boundary conditions are considered. Initial stresses caused by thermal loads or in-plane edge loads are introduced. The effects of material property gradient, the volume fraction distribution, the foundation stiffness, the temperature change, the initial stress, and the core-to-face sheet thickness ratio on the dynamic response of CNTRC plates are discussed in detail through a parametric study.  相似文献   

19.
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates.  相似文献   

20.
基于一阶剪切变形板理论,推导了功能梯度材料圆形板在边界面内均布压力作用下的轴对称屈曲方程。在推导过程中,忽略了前屈曲耦合变形。利用一阶板理论与经典板理论屈曲方程之间在数学形式上的相似性,得到了一阶板理论下功能梯度材料圆板与经典板理论下均匀圆板临界屈曲载荷之间的解析关系。利用这个解析关系,可以直接从已有的较为简单的经典理论的结果,获得一阶板理论下功能梯度材料板的临界屈曲载荷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号