首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Describing the behaviors of stress singularities correctly is essential for obtaining accurate numerical solutions of complicated problems with stress singularities. This analysis derives asymptotic solutions for functionally graded material (FGM) thin plates with geometrically induced stress singularities. The classical thin plate theory is used to establish the equilibrium equations for FGM thin plates. It is assumed that the Young’s modulus varies along the thickness and Poisson’s ratio is constant. The eigenfunction expansion method is employed to the equilibrium equations in terms of displacement components for an asymptotic analysis in the vicinity of a sharp corner. The characteristic equations for determining the stress singularity order at the corner vertex and the corresponding corner functions are explicitly given for different combinations of boundary conditions along the radial edges forming the sharp corner. The non-homogeneous elasticity properties are present only in the characteristic equations corresponding to boundary conditions involving simple support. Finally, the effects of material non-homogeneity following a power law on the stress singularity orders are thoroughly examined by showing the minimum real values of the roots of the characteristic equations varying with the material properties and vertex angle.  相似文献   

2.
To fill the gap in the literature on the application of three-dimensional elasticity theory to geometrically induced stress singularities, this work develops asymptotic solutions for Williams-type stress singularities in bodies of revolution that are made of rectilinearly anisotropic materials. The Cartesian coordinate system used to describe the material properties differs from the coordinate system used to describe the geometry of a body of revolution, so the problems under consideration are very complicated. The eigenfunction expansion approach is combined with a power series solution technique to find the asymptotic solutions by directly solving the three-dimensional equilibrium equations in terms of the displacement components. The correctness of the proposed solution is verified by convergence studies and by comparisons with results obtained using closed-form characteristic equations for an isotropic body of revolution and using the commercial finite element program ABAQUS for orthotropic bodies of revolution. Thereafter, the solution is employed to comprehensively examine the singularities of bodies of revolution with different geometries, made of a single material or bi-materials, under different boundary conditions.  相似文献   

3.
The dynamic analysis of laminated plates with various loading and boundary conditions is presented employing generalized differential quadrature (GDQ) method. The first-order shear deformation theory is considered to model the transient response of the plate. The GDQ technique together with Newmark integration scheme is employed to solve the system of transient equations governing dynamics of the plate. Different symmetric and asymmetric lamination sequences together with various combinations of clamped, simply supported, and free boundary conditions are considered. Particular interest of this study regards to asymmetric orthotropic plates having free edge and mixed boundary conditions. It is shown that the method provides reasonably accurate results with relatively small number of grid points. Comparison of the results with those of other methods demonstrates a very good agreement. It is also revealed that the present method offers similar order of accuracy for all variables including displacements and stress resultants.  相似文献   

4.
This paper derives accurate equations of elastic deformation for laminated composite deep, thick shells. The equations include shells with a pre-twist and accurate force and moment resultants which are considerably different than those used for plates. This is due to the fact that the stresses over the thickness of the shell have to be integrated on a trapezoidal-like cross-section of a shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical. A consistent set of equations of motion, energy functionals and boundary conditions are also derived. These may be used in obtaining exact solutions or approximate ones like the Ritz or finite element methods.  相似文献   

5.
Summary In this paper, the stress singularities for a cylindrically polarized piezoelectric wedge are investigated. The characteristic equations are derived analytically by using the extended Lekhnitskii formulation. The piezoelectric material (PZT-4) is polarized in the radial, circular or axial direction, respectively. Similar to the rectilinearly polarized piezoelectric problem, the inplane and antiplane stress fields are uncoupled. The results show the variations of the singularity orders with the changes of the wedge angle, material constants, polarized direction, and the boundary conditions.  相似文献   

6.
We continue a previous work [1] on propagation of singularities for model problems of thin shell theory in the parabolic and hyperbolic cases. The singularities along the characteristic boundaries are considered using extensions of the solutions out of the domain, adapted to either free or fixed boundaries. The corresponding transport equations are given except for the case of a characteristic fixed boundary for a hyperbolic shell, where the phenomenon is non local, but depends on the whole domain.  相似文献   

7.
This paper investigates the non-linear free vibration of prestressed plates and shells in a general form. The analysis includes the effects of in-plane inertia. The analysis is based on the non-linear equations of motion and uses a perturbation procedure. No assumption is made a priori for the form of the time or space mode. The boundary conditions are treated in a general manner including boundary conditions where non-linear stress resultants are specified. The method is illustrated by three examples.  相似文献   

8.
In this paper, the non-local theory of elasticity is applied to obtain the behavior of a Griffith crack in the piezoelectric materials subjected to a uniform tension loading. The permittivity of the air in the crack is considered. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the crack length, the materials constants, the electric boundary conditions and the lattice parameter on the stress and the electric displacement fields near the crack tips. It can be obtained that the effects of the electric boundary conditions on the electric displacement fields are large. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularities are present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips, thus allowing us to use the maximum stress as a fracture criterion.  相似文献   

9.
The singularities of the boundary layer equations and the laminar viscous gas flow structure in the vicinity of the convergence plane on sharp conical bodies at incidence are analyzed. In the outer part of the boundary layer the singularities are obtained in explicit form. It is shown that in the vicinity of a singularity a boundary domain, in which the flow is governed by the shortened Navier-Stokes equations, is formed; their regular solutions are obtained. The viscous-inviscid interaction effect predominates in a region whose extent is of the order of the square root of the boundary layer thickness, in which the flow is described by a two-layer model, namely, the Euler equations in the slender-body approximation for the outer region and the three-dimensional boundary layer equations; the pressure is determined from the interaction conditions. On the basis of an analysis of the solutions for the outer part of the boundary layer it is shown that interaction leads to attenuation of the singularities and the dependence of the nature of the flow on the longitudinal coordinate, but does not make it possible to eliminate the singularities completely.  相似文献   

10.
The buckling of a bar is studied analytically on the basis of a simple linear theory of gradient elasticity in the frame of the method of initial values. The method of initial values provides the values of the displacements and stress resultants throughout the bar once the initial displacements and initial stress resultants are known. We use probably for the first time the method of initial values to get critical loads of a strain gradient beam under completely different boundary conditions at the two end faces of the beam. Exact carryover matrix is presented for the classical beam and gradient beam analytically. The first mode shapes of classical beam and gradient beam are plotted. The method of initial values is also applied to the beams with variable cross-section. The priorities of the method of initial values are depicted. The variational approach gives a sixth-order ordinary differential equation for a beam in buckling. The additional boundary conditions are used to obtain critical loads. It is observed that critical loads increase dramatically for increasing values of the gradient coefficient.  相似文献   

11.
The combined flutter and divergence instability of plates of arbitrary geometry subjected to any type of boundary conditions under interior and edge conservative and nonconservative loads are solved in presence of external and internal damping. In contrast to previous investigations, the membrane stress resultants are not in general uniform, since they result from plane stress problem under the given body forces (conservative and nonconservative) and the prescribed inplane boundary conditions. The differential equations of the problem are derived using Hamilton’s principle. The resulted initial boundary value problem is solved using the analog equation method (AEM), which is a BEM-based domain meshless method. The combined action of conservative and nonconservative forces is also investigated. Several plates have been studied and useful conclusions on the effect of boundary conditions and damping on flutter load have been drawn. The obtained numerical results demonstrate the accuracy of the developed method and its capability to solve realistic engineering problems.  相似文献   

12.
There are many problems of the dynamics of viscous flows of liquids and gases at high Reynolds numbers for the solution of which the classical theory of the boundary layer cannot be used. This applies, in particular, to all the problems with various sorts of local singularities in the stream-flows in the vicinity of corners, in regions of interaction of the boundary layer with an incident shock, flows near points of separation or attachment of the stream, etc. The purpose of the present paper is to attempt the theoretical investigation of problems of this type on the basis of the general analysis of the asymptotic behavior of the solutions of the Navier-Stokes equations. In order to do this, use is made of the familiar method of the construction and splicing of a combination of asymptotic expansions representing the solutions in the various characteristic regions of the stream with viscosity decreasing without bound [1].As an example, detailed consideration is given to the problem of viscous supersonic flow near a wall with large local curvature of the surface.  相似文献   

13.
It is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector. The consistent second approximation to the complementary energy density of the geometrically non-linear theory of isotropic elastic shells is constructed. From differentiation of the density we obtain the consistently refined constitutive equations for 2D surface stretch and bending measures. These equations are then inverted for 2D stress resultants and stress couples. The second-order terms in these constitutive equations take consistent account of influence of undeformed midsurface curvatures. The drilling couples are explicitly expressed by the stress couples, undeformed midsurface curvatures, and amplitudes of quadratic part of displacement distribution through the thickness. The drilling couples are shown to be much smaller than the stress couples, and their influence on the stress and strain state of the shell is negligible. However, such very small drilling couples have to be admitted in non-linear analyses of irregular multi-shell structures, e.g. shells with branches, intersections, or technological junctions. In such shell problems six 2D couple resultants are required to preserve the structure of the resultant shell theory at the junctions during entire deformation process.  相似文献   

14.
曹彩芹  陈晶博  李东波 《力学学报》2022,54(11):3088-3098
具有尺度依赖的挠曲电效应在器件的设计中扮演着越来越关键的角色, 研究人员在微纳米尺度多物理场分析中进行了大量工作. 基于考虑挠曲电和电场梯度效应的弹性介电材料非经典理论, 以二维纳米板为例, 通过理论建模, 分析纳米板在弯曲问题中的力?电耦合行为. 根据Mindlin假设给出板的位移场和电势场的一阶截断, 选取板的材料为立方晶体(m3m点群), 将广义三维本构方程代入到高阶应力、高阶偶应力、高阶电位移和高阶电四极矩的表达式中得到相应的二维本构方程, 利用弹性电介质变分原理得到板的控制方程和边界上的线积分等式, 分别将二维本构方程和边界上外法线的方向余弦代入, 得到板的高阶弯曲方程、高阶电势方程以及对应的四边简支边界条件. 利用四边简支矩形板的高阶弯曲方程、高阶电势方程和相应的边界条件, 根据Navier解理论, 求解纳米板的电势场, 重点分析电场梯度对板内一阶电势的影响. 数值计算结果表明: 电场梯度对纳米板中由挠曲电效应产生的一阶电势有削弱作用, 且材料参数g11越大, 一阶电势受到的削弱越大; 同时电场梯度的存在消除了纳米板在受横向集中载荷作用时一阶电势的奇异性. 本文是对具有挠曲电效应和电场梯度效应的纳米板结构分析理论的一个扩展, 为微纳米尺度器件的结构设计提供参考.   相似文献   

15.
In this paper, we focus on the computation of stress resultants of a floating elastic plate using the Mindlin plate theory. The proposed method makes use of the linear wave theory and shallow-draft assumption. However, the usual Kirchhoff theory is replaced by the Mindlin theory for the plate. For a single frequency, the coupled water-plate problem is solved using a higher-order-coupled finite element–boundary element method. The solutions for the stress-resultants computed using the proposed method are more satisfactory than these based on the Kirchhoff plate theory.  相似文献   

16.
The influence of the geometry of a thin intermediate zone on the stress distribution has been investigated in the vicinity of a crack tip in a bimaterial structure. Corresponding modelling boundary value problems are reduced to functional-difference equations by the Mellin transform technique, and later to singular integral equations with fixed point singularities. It has been observed that the order of the stress singularity is essentially dependent on the model parameters. Numerical results concerning the stress singularity exponents and generalized stress intensity factors are presented.  相似文献   

17.
Summary  The present paper discusses a plane strain problem of transient thermoelasticity in a circular cylinder which is in partial contact with two heated rigid stamps, in the case where the coefficient of relative heat transfer on the contact surface of the cylinder is different from that on the traction-free surface. A finite difference method with respect to the time variable and Airy's thermal stress function is employed to analyze the temperature and thermoelastic fields. The problem is formulated in terms of two dual-series equations derived not only from the thermal boundary conditions but also from the mechanical boundary conditions. Since the radial, hoop and axial stresses have singularities at the end of the contact surface of the cylinder, the stress singularity coefficients are defined and then the relationship among these three coefficients is also obtained. Finally, numerical results are illustrated graphically. Received 3 March 2000; accepted for publication 12 July 2000  相似文献   

18.
Yuli  Gao  Yizhong  Lu 《Acta Mechanica Sinica》1986,2(2):158-168
Crack problems for isotropic/orthotropic two-layered strips have been investigated. A system of two singular integral equations can be derived by using Fourier integral transformation and boundary conditions of crack problems. After stress singularities at crack tips or other special points are determined for internal and edge cracks, and for cracks terminating at and going through the interface, the system of singular integral equations is solved numerically by Gauss-Jacobi or Gauss-Chebyshev integration formulas for stress intensity factors at the tips and other singular points of cracks. Finally, possible crack growth behavior for cracks approaching and going through the interface is discussed.  相似文献   

19.
This paper deals with numerical solution of singular integral equations of the body force method in an interaction problem of revolutional ellipsoidal cavities under asymmetric uniaxial tension. The problem is solved on the superposition of two auxiliary loads; (i) biaxial tension and (ii) plane state of pure shear. These problems are formulated as a system of singular integral equations with Cauchy-type singularities, where the unknowns are densities of body forces distributed in the r, θ, z directions. In order to satisfy the boundary conditions along the ellipsoidal boundaries, eight kinds of fundamental density functions proposed in our previous papers are applied. In the analysis, the number, shape, and spacing of cavities are varied systematically; then the magnitude and position of the maximum stress are examined. For any fixed shape and size of cavities, the maximum stress is shown to be linear with the reciprocal of squared number of cavities. The present method is found to yield rapidly converging numerical results for various geometrical conditions of cavities.  相似文献   

20.
This paper presents a new curved quadrilateral plate element with12-degree freedom by the exact element method.The method can be used to arbitrary non-positive and positive definite partial differential equations without variation principle.Using this method,the compatibility conditions between element can be treated very easily,if displacements and stress resultants are continuous at nodes between elements.The displacements and stress resultants obtained by the present method can converge to exact solution and have the second order convergence speed.Numerical examples are given at the end of this paper,which show the excellent precision and efficiency of the new element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号