首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《Journal of Crystal Growth》2006,286(1):126-130
The absorption spectra of the undoped Y2SiO5 and Eu3+-doped Y2SiO5 crystals grown by the Czochralski technique were compared before and after annealing and, similarly, the unannealed and annealed crystals after γ-ray irradiation. The absorption bands of Eu2+ ions with peaks at 300 and 390 nm were observed in the as-grown Y2SiO5:Eu3+ crystal. These peaks were more intense in H2-annealed and irradiated Y2SiO5:Eu3+ crystals. The additional absorption peaks at 260 and 320-330 nm which were attributed to F color centers and O hole centers were observed in irradiated undoped Y2SiO5 and Y2SiO5:Eu3+ crystals, respectively.  相似文献   

2.
《Journal of Non》2006,352(28-29):2969-2976
A colorless transparent luminescence material was successfully prepared by impregnation of leached, porous glass with Tb3+ ions followed by reductive sintering in a CO atmosphere. Tb3+ emissions under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation clearly showed the most intense emission band to be situated at 543 nm, which corresponds to the 5D4  7F5 transition. Sintering of the Tb glass in a reducing atmosphere resulted in a significant enhancement of Tb3+ emission intensity in comparison with sintering in air. The presence of traces of cerium ions was verified in Tb glasses, and more Ce3+ ions were produced as a result of the reductive sintering. The increase in Ce3+ ions was believed to be mainly responsible for the enhancement of 5D3  7Fj and 5D4  7Fj transitions from Tb3+ ions owing to an energy transfer channel. A clearly defined difference in the spectral energy distribution of Tb3+ emissions was found for 231 nm UV and 160 nm VUV excitation of the Tb glass. The phenomenon of cross relaxation was only observed under 231 nm UV excitation. Different excitation mechanisms were taken into account. Direct excitation of Tb3+ ions together with Ce3+ ions occurred in the Tb glass under the 231 nm UV light, whereas indirect excitation consisting of host absorption of energy and transfer from host to Tb3+ ions occurred under the 160 nm VUV light.  相似文献   

3.
Structure and optical properties of MoO3-doped lead borate glasses which contain high PbO content (60, 70 and 80%) have been studied using Fourier transform infrared (FTIR) and ultraviolet–visible (UV–VIS) spectroscopic tools. FTIR spectra reveal absorption bands which are characteristic for various structural units of borate network, mainly BO3 triangles and BO4 tetrahedra, in addition to the PbOn (where n = 3 and/or 4) structural units. UV–VIS optical absorption spectra reveal broad intense charge transfer UV bands due to Pb2 + ions in the range 320–385 nm. Within this range, molybdenum ions, preferably Mo3 + and Mo5 +, can interfere at about 360–385 nm. Additionally, molybdenum ions give a weak visible band at about 850–860 nm. The optical absorption spectra of the studied glasses show marked resistance to successive gamma irradiation up to 5 Mrad. This shielding behavior can be related to the present high content of the high atomic mass Pb2 + ions. Changes in the atomic structure before and after gamma irradiation are described and explained.  相似文献   

4.
Transparent Lu0.8Sc0.2BO3 crystals doped with 1 at%Ce3+ and co-doped with 1 at% and 3 at%Ga3+ were grown by the Czochralski method. We applied absorption spectrum, luminescence spectra under UV and X-ray excitation, fluorescence decay curve, three dimensional thermoluminescene and X-ray absorption near edge spectroscopy to study the effect of Ga3+ co-doping on the Lu0.8Sc0.2BO3:Ce scintillation crystals. Experimental results indicated that no positive contribution of the Ga3+ ion doping on the scintillation efficiency was found. The causes for the deterioration of scintillation efficiency by co-doping Ga3+ were revealed. The decrease of practical cerium content and the Ce3+/Ce4+ ratio in crystals, and the increase of the trap concentrations, although the corresponding trap types still maintained the same, played a joint influence on the degrading of scintillation efficiency of Lu0.8Sc0.2BO3:Ce crystals.  相似文献   

5.
F.H. ElBatal  Y.M. Hamdy  S.Y. Marzouk 《Journal of Non》2009,355(50-51):2439-2447
Undoped and transition metals (TM 3d)-doped lead phosphate glasses were prepared. Ultraviolet–visible absorption spectra were measured in the range 200–1100 nm before and after successive gamma irradiation. Experimental results indicate that the undoped lead phosphate glass reveals before irradiation strong and broad ultraviolet absorption which is related to the co-sharing of absorption due to both trace iron impurities and lead ions (Pb2+). In the TM-doped glasses, characteristic absorption bands are obtained in both the UV and/or visible regions due to each respective TM ion in addition to that observed by the base undoped UV absorption. Gamma irradiation produces with the undoped glass a prominent induced ultraviolet broad band centered at about 300 nm originating mostly from the contribution of trace iron impurities and the visible spectra reveal markedly high shielding behavior towards successive gamma irradiation, due to the presence of both high content of heavy Pb2+ ions and the sharing of phosphate as a partner. With TM-doped samples, the observed induced bands are virtually varying and related to the type of the sharing TM ions. Infrared absorption spectra reveal in the undoped and TM-doped glasses characteristic structural phosphate groups mainly consisting of metaphosphate and pyrophosphate units. Transition metals are assumed to cause depolymerization of the phosphate glass network with different ratios but the changes in IR spectral data are limited due to the low doping level. Gamma irradiation of the samples is assumed to cause changes in the bond angles or bond lengths of the structural phosphate units within network as evident in the variation of the intensities of the IR bands.  相似文献   

6.
Ce3+ induced enhancement of Ho3+ ~ 2.0 μm emission in Yb3+/Ho3+ codoped sodium–zinc–tellurite (TNZ) glass was achieved under 980 nm LD laser excitation. The spectroscopic studies show that the upconversion is remarkably reduced by the presence of Ce3+. The ~ 2.0 μm fluorescence intensity is nearly triply enhanced, and the energy transfer efficiency from Yb3+ to Ho3+ is improved from 16.1% to 42.6% by increasing the Ce3+ concentration from 0 to 0.8 mol%. The mechanism responsible for the upconversion reduction and ~ 2.0 μm emission enhancement in Yb3+/Ho3+/Ce3+ triply-doped TNZ glass is also discussed. Our results indicate that the Yb3+/Ho3+/Ce3+ triply-doped TNZ glass is a promising candidate material for improving the Ho3+ 2.0 μm fiber laser performance.  相似文献   

7.
Eu/Tb codoped aluminoborosilicate glasses were fabricated by high temperature melting-quenched technique and their luminescence properties were investigated by excitation and emission spectra. Under 376 nm excitation, blue, green and red emission bands were simultaneously observed at 425 nm, 485 nm, 540 nm and 611 nm, respectively. The broad blue emission band centered at 425 nm was originated from the reduced Eu2+ ions, which were reduced from Eu3+ ions at high temperature in an ambient atmosphere and the reduction process may be related with the optical basicity of glass matrix. A complex bright white light emission was obtained for 0.5 mol% Eu2O3, 0.5 mol% Tb2O3 codoped aluminoborosilicate glass with CIE-X = 0.31 and CIE-Y = 0.33. The energy transfer among Eu3+, Eu2+ and Tb3+ ions was also discussed.  相似文献   

8.
Hongping Ma  Ping Liu  Degang Deng  Shiqing Xu 《Journal of Non》2011,357(11-13):2294-2297
We report transparent Cr4+-doped SiO2–Al2O3–ZnO–Li2O–K2O glass-ceramics with broadband infrared luminescence. After heart-treatment, Li2ZnSiO4 crystallite was precipitated in the glasses, and its average size increased with increasing heat-treatment temperature. Racah parameters of Cr4+–Li2ZnSiO4 glass-ceramics have been calculated, and it was confirmed from absorption spectra that the energy levels of Cr4+-doped glass-ceramics are close to the cross point 1E and 3T states. No infrared emission was detected in the as-made glass samples, but the broadband infrared emission centered at 1210 nm with the full width at half maximum (FWHM) of more than 250 nm was observed by exciting the glass-ceramics with excitation of an 808 nm laser diode. In order to analyze the located crystal field of Cr4+ ions, the emission spectra are fitted by multi-peak Gauss fitting. It is seen that the fluorescence spectra are fitted into two Gaussian bands at around 1195 and 1263 nm with band widths of 208 and 278 nm, respectively. The two Gaussian bands at around 1195 and 1263 nm have about the same decay rate, and hence they would probably originate from the same luminescent centers. The observed infrared emission could be attributed to Cr4+ ions at low-field sites in Li2ZnSiO4 glass-ceramics.  相似文献   

9.
Jiajia Zhou  Yu Teng  Geng Lin  Jianrong Qiu 《Journal of Non》2011,357(11-13):2336-2339
The ultraviolet to near-infrared spectral modification in Ce3+ and Yb3+ codoped phosphate glasses was realized through the energy transfer from Ce3+ to Yb3+. The absorption spectra, fluorescence excitation and emission spectra, luminescence decay curves, and time-resolved emission spectra were measured and analyzed. The energy transfer efficiency and concentration quenching efficiency were calculated based on the decay curves of Ce3+ 340 nm emission and Yb3+ 976 nm emission. The calculated and experimental NIR emission intensities on the Yb3+ concentrations were compared and discussed.  相似文献   

10.
Changes of optical properties of cerium doped YAG single crystals (0.05, 0.1, 0.2 at.% Ce, and 0.2 at.% Ce "+" 0.1at.% Mg) after thermal annealing at 1400°C in air or 1200°C in N2+H2 mixture and subsequent g or proton irradiation were investigated. For initial Ce3+ contents <0.05 at.% an increase and for Ce3+ contents >0,05 at.% a decrease of the final Ce3+ concentration was observed. Appropriate changes in luminescence of Ce: YAG crystals were observed as a consequence of dopant concentration changes. They were small after gamma-irradiation of Ce: YAG crystals with Ce3+ content >0,05at.% and reached about 100% after gamma-irradiation of crystals with Ce3+ content < 0.05 at.%.  相似文献   

11.
Z.M. Shi  L. Yan 《Journal of Non》2008,354(40-41):4654-4660
The transformation behaviors of La3+/Ce3+-doped TiO2–SnO2 gels were studied by using differential thermal analysis and X-ray diffraction methods so as to improve the phase transformation and decrease the granularity of crystals. Experimental results show that, anatase, rutile and SnO2 nanocrystals can exist in the sintering products by varying La3+/Ce3+ contents and sintering temperatures. 0.8–1.1 wt% of La2O3 or CeO2 doping greatly depresses the growth of anatase and rutile crystals, obtaining nanosized crystals when sintered up to 600 °C for 2 h. With La3+/Ce3+-doping and increasing their contents, the transformations of gel to anatase and anatase to rutile, as well as the growth of anatase and rutile crystals can be depressed, while the transformation temperature of anatase to rutile receives much less affect. Moreover, the La3+-doping has stronger effects on them than Ce3+ doping, but has a weaker inhibiting effect on precipitation and growth of SnO2 crystals.  相似文献   

12.
《Journal of Non》2005,351(49-51):3699-3703
Thermally stimulated luminescence (TSL) properties of cerium and terbium doped SiO2 sol–gel glasses were studied after X-ray irradiation in the temperature range 10–700 K. The role of Ce3+ and Tb3+ as recombination centers was shown. The existence of a distribution of trap levels was observed; the activation energies of such a distribution were calculated to extend from about 8 × 10−3 eV up to 1.8 eV for both cerium and terbium doped sol–gel glasses. The effect of a post-densification thermal treatment on TSL properties was also analyzed.  相似文献   

13.
《Journal of Non》2006,352(23-25):2347-2350
Focused infrared femtosecond laser pulses (wavelength ∼800 nm, emission pulse duration 100 fs) were employed to fabricate optoelectronic devices such as waveguides, micro-gratings and laser active centers in LiF crystals. F2 color centers of about 2 × 1018 cm−3 and refractive index change of about 1% at 633 nm were induced by the fs-laser irradiation. This technique was applied to fabricate a distributed-feedback (DFB) F2 color center laser structure inside LiF single crystal. The LiF DFB laser exhibited laser oscillation at 707 nm at room temperature. The slope efficiency of ∼10% and beam divergence of ∼20 mrad were achieved.  相似文献   

14.
Tb3+ doped X-ray conversion glassy screen with an industrial scale (50 mm × 50 mm × 12 mm) was successfully fabricated, and its luminescent properties and applications in CCD imaging system were investigated. Results showed that Tb3+ doped silicate glasses mainly emit weak blue (400–460 nm) and strong green (480–570 nm) fluorescence. With the increase of Tb3+ ion concentration, the intensity of green emission increases, but that of blue emission decreases. Gd3+ ions can sensitize the luminescence of Tb3+ ions among silicate glasses. With the increase of CeO2 concentration, the luminescent intensity of Tb3+ doped silicate glasses at 550 nm quickly decreases. However, the irradiation resistance of Tb3+ doped silicate glasses can be effectively improved by CeO2 addition. The imaging quality of the luminescent glass screen is more excellent than that of Gd2O2S polycrystalline screens.  相似文献   

15.
《Journal of Non》2007,353(24-25):2397-2402
Sm-doped borosilicate glasses exposed to β-irradiation with doses from 8 × 105 up to 4 × 109 Gy have been studied by luminescence, Raman and electron paramagnetic resonance (EPR) spectroscopies. The luminescence spectra for pristine and irradiated glasses reveal that the β-irradiation process affects valence state of samarium ions. Intense emission at 684 and 727 nm excited by Ar+ laser (514.5 nm) due to the transition of Sm2+ ion was observed after irradiation. Relative proportion of Sm2+ ions estimated as a function of both Sm2O3 content and irradiation dose has the tendency to increase with increasing irradiation dose. In contrast, the EPR spectra of the studied samples reveal a decrease of the defect content, which are mostly hole defects, produced during irradiation, as a function of Sm2O3 content. Finally, the addition of Sm2O3 leads to a decrease of the Si–O–Si bending vibration modes shift and polymerisation changes under irradiation.  相似文献   

16.
In the present work, Ce3+/Tb3+ co-doped 60P2O5-30BaO-10B2O3 phosphate glasses are prepared and their luminescence properties are presented. Under excitation at 303 nm, the Ce3+ ions singly doped sample show a novel red emission besides the UV one. The co-doped samples show enhanced Tb3+ ions emission with the increasing of Tb3+ ions concentration at the cost of Ce3+ emission. The mechanism of this luminescent behavior is discussed with respect to the relevant energy transfer process.  相似文献   

17.
Ultra violet-visible (UV-Vis) and Fourier transform infrared (FT-IR) spectra of Nd doped phosphate glasses have been studied before and after gamma irradiation in order to understand the changes in the optical properties of glasses as well as to find the characteristics frequencies of the vibrational modes of chemical bonds, which decide the structural and spectral changes. UV, Vis, IR absorption and photoluminescence spectra of these glasses show changes depending on the composition of glass matrix. These changes are correlated on the basis of oxygen (O) and neodymium (Nd) concentration ratio obtained from energy dispersive X-ray spectroscopic (EDX) measurement. Gamma irradiation shows decrease in transmission below 700 nm for all the Nd3+ absorption lines from all the samples. Differential absorption spectra (UV-vis) of the samples before and after gamma irradiation show generation of some new bands below 700 nm along with dips (decrease) in the spectrum at the location of main Nd3+ absorption lines. This is attributed to the generation of different types of defects in the glass matrix along with possibility of change in the valence state of Nd3+ to Nd2+. IR absorption spectra of these glasses are found dominated mainly by the characteristics phosphate groups and water (OH) present in the glass network. The effects of gamma irradiation on IR absorption are observed in the form of bond breaking and possible re-arrangement of bonding. EDX and X-ray photoelectron spectroscopic (XPS) measurements indicate decrease in the relative concentration of oxygen in the glass samples after γ-irradiation.  相似文献   

18.
《Journal of Non》2007,353(5-7):490-493
Rare-earth doped photonic materials and structures have been prepared by sol–gel processing, in the form of 1D photonic bandgap multilayer stacks of silica and titania. A significant enhancement of the Er3+ emission at ca. 1530 nm occurred when these ions were inserted into Bragg mirrors and microcavities. In Er3+/Yb3+ co-doped structures, an efficient energy transfer at 980 nm was observed from Yb3+ to Er3+ when these ions were in close proximity and especially when they were simultaneously present, in the same defect layer, with a 1530 nm photoluminescence enhancement of up to ∼25 times being observed for excitation at 980 nm, compared to the excitation of the same microcavities samples at 514.5 nm.  相似文献   

19.
By annealing fused silica coated with ultra-thin Ag film, silica nano-rings and nano-hollows were prepared on the substrate. The Ag nano-particles attached on the wall of nano-hollows or embedded in silica were confirmed with energy dispersive spectroscopy and transmission electron microscopy. Besides the well-known characteristic stretching bands of silica, three novel stretching bands around 1579, 1320 and 270 cm?1 were found in the annealed Ag-coated silica by Raman scattering spectroscopy, which have been attributed to the O2 in ground state, O–O and metal–oxygen stretching bands, respectively. The formation mechanism of nano-rings and nano-hollows has been discussed based on the experimental results. An ultraviolet photoluminescence emission of 360–370 nm from annealed Ag-coated silica was found when the excitations were 230 nm and 280 nm or longer. The possible photoluminescence emission mechanism has been discussed, which suggests that oxygen excess defects are responsible for the photoluminescence emission, and photoexcitation occurs in the silica as well as in Ag+ ions.  相似文献   

20.
《Journal of Non》2007,353(18-21):1748-1754
Efficient infrared-to-visible conversion is reported in thin film nano-composites, with composition 90% SiO2–10% TiO2, fabricated by a spin-coating sol–gel route and co-doped with Er3+ Yb3+ and with Nd3+:Yb3+ ions. The conversion process is observed under 808 nm laser diode excitation and results in the generation of green (526 and 550 nm) and red (650 nm) emissions: from the former, and blue (478 nm) and green (513 and 580 nm) emissions from the latter. The main mechanism that allows for up-conversion is ascribed to energy transfer among Er3+ and Yb3+ ions in their excited states. Up-conversion efficiency for red emission predominates in samples doped with Er3+:Yb3. The results illustrate the large potential of this class of materials for photonic applications in optoelectronics devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号