首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the electrical properties of polycrystalline silicon (poly-Si) thin film transistors (TFTs) employing field-enhanced solid phase crystallization (FESPC). An n+ amorphous silicon (n+ a-Si) layer was deposited to improve the contact resistance between the active Si and source/drain (S/D) metal instead of ion doping. By using CV measurement method, we could explain the diffused phosphorous ions (P+ ions) on the channel surface caused a negatively shifted threshold voltage (VTH) of ?7.81 V at a drain bias of 0.1 V, and stretched out a subthreshold swing (S) of 1.698 V/dec. This process was almost compatible with the widely used hydrogenated amorphous silicon (a-Si:H) TFT fabrication process and also offers a better uniformity when compared to the conventional laser-crystallized poly-Si TFT process because of non-laser crystallization.  相似文献   

2.
《Journal of Non》2006,352(9-20):993-997
A simple and effective method for selective CW laser crystallization of a-Si (CLC) without pre-patterning of a-Si has been reported. By using a metallic shadow mask instead of a photolithographic process, we can reduce the process steps and time compared with a conventional CLC process. It shows very high performance – mobility of 173 cm2/s, Ioff of ∼10−13 A @ Vd = −5 V, Ion/Ioff of >108 – as a p-channel poly-Si TFT even without any pre-/post-treatment to improve TFT characteristics such as plasma hydrogenation.  相似文献   

3.
SiO2/Si/SiO2 single quantum wells (QWs) were prepared under ultrahigh vacuum conditions in order to study their structural, chemical and photoelectrical properties with respect to a possible application in photovoltaic devices. Amorphous silicon (a-Si) layers (thickness <10 nm) were deposited onto quartz glass (SiO2) substrates and subsequently oxidized with neutral atomic oxygen at moderate temperatures of 600 °C. Under these conditions, the formation of suboxides is mostly suppressed and abrupt Si/SiO2 interfaces are obtained. Crystallization of a-Si QWs requires temperatures as high as 1000 °C resulting in a nanocrystalline structure with a small amorphous fraction. The spectral dependence of the internal quantum efficiency of photoconductivity correlates well with the nanocrystalline structure and yields mobility lifetime products of <10?7 cm2 V?1. This rather low value points towards a strong influence of Si/SiO2 interface states on the carrier mobility and the carrier lifetime in Si QWs. Electronic passivation of interface states by subsequent hydrogen treatment in forming gas enhances the internal quantum efficiency by nearly one order of magnitude.  相似文献   

4.
The aim of this research is to fabricate high efficiency a-Si/μc-Si tandem solar cell modules on flexible (polymer) superstrates using the Helianthos concept. As a first step we began by depositing the top cell which contains an amorphous silicon (a-Si:H) i-layer of ~350 nm made by VHF PECVD at 50 MHz in a high vacuum multichamber system called ASTER, with hydrogen to silane gas flow ratio of 1:1. Such amorphous cells on-foil showed an initial active area (0.912 cm2) efficiency of 7.69% (Voc = 0.834 V, FF = 0.71). These cells were light soaked with white light at a controlled temperature of 50 °C. The efficiency degradation was predominantly due to degradation of FF that amounted to only 11% after 1000 h of light soaking. The cell-on-foil data prove that thin film silicon modules of high stability on cheap plastics can be made at a reasonable efficiency within 30 min of deposition time. A minimodule of 8 × 7.5 cm2 area (consisting of 8 cells interconnected in series) with the same single junction a-Si:H p–i–n structure had an initial efficiency of 6.7% (Voc = 6.32 V, FF = 0.65).  相似文献   

5.
《Journal of Non》2006,352(9-20):1217-1220
We have investigated PECVD-deposited ultrathin intrinsic a-Si:H layers on c-Si substrates using UV-excited photoemission spectroscopy ( = 4–8 eV) and surface photovoltage measurements. For samples deposited at 230 °C, the Urbach energy is minimal, the Fermi level closest to midgap and the interface recombination velocity has a minimum. The a-Si:H/c-Si interface density of states is comparable to that of thermally oxidized silicon interfaces. However, the measured a-Si:H dangling bond densities are generally higher than in thick films and not correlated with the Urbach energy. This is ascribed to additional disorder induced by the proximity of the a-Si:H/c-Si interface and H-rich growth in the film/substrate interface region.  相似文献   

6.
L. Korte  M. Schmidt 《Journal of Non》2008,354(19-25):2138-2143
A variant of photoelectron spectroscopy with near-UV light excitation was established and applied to an n-type doping series of ultra-thin a-Si:H layers (layer thickness ~10 nm). Using this technique, the position of the surface Fermi level EFs is obtained and the density of recombination active defect states in the a-Si:H band gap down to ~1015 states/cm3 can be detected. Defect densities are generally about one order of magnitude higher than in the bulk of thicker (several 100 nm) layers, and the minimum achievable distance of EFs from the conduction band is ~360 mV for doping with 104 ppm PH3. The optimum doping for the fabrication of solar cells is almost one order of magnitude lower. This discrepancy may be explained by enhanced recombination at the a-Si:H/c-Si interface at high doping levels, and in addition by an efficient recombination pathway where charge carriers tunnel from c-Si via a-Si:H band tail states into the a-Si:H and subsequently recombine at dangling bond states.  相似文献   

7.
We report improvement in characteristics of hydrogenated amorphous silicon (a-Si:H ) p-i-n structured solar cells by high-pressure H2O vapor heat treatment. a-Si:H p-i-n solar cells were formed on glass substrates coated with textured SnO2 layer. P-, i-, and n-type a-Si:H layers were subsequently formed by plasma enhanced chemical vapor deposition. Finally an indium-tin-oxide layer was coated on the n-type a-Si:H surface. Heat treatment at 210 °C with 2 × 105 Pa H2O vapor for 1 h was applied to the a-Si:H p-i-n solar cells. Electrical characteristics were measured when samples were kept in dark and illuminated with light of AM 1.5 at 100 mW/cm2. The heat treatment with H2O vapor increased fill factor (FF) and the conversion efficiency from 0.54 and 7.7% (initial) to 0.57 and 8.4%, respectively. Marked improvement in solar cell characteristics was also observed in the case of a poor a-Si:H p-i-n solar cell. FF and the conversion efficiency were increased from 0.29 and 3.2% (initial) to 0.56 and 7.7%, respectively.  相似文献   

8.
《Journal of Non》2006,352(9-20):1204-1208
The aim of this work is to present a spectroscopic ellipsometry study focused on the annealing time effect on nickel metal induced crystallization of amorphous silicon thin films. For this purpose silicon layers with 80 and 125 nm were used on the top of which a 0.5 nm Ni thick layer was deposited. The ellipsometry simulation using a Bruggemann Effective Medium Approximation shows that films with 80 nm reach a crystalline fraction of 72% after 1 h annealing, appearing to be full crystallized after 2 h. No significant structural improvement is detected for longer annealing times. On the 125 nm samples the crystalline volume fraction after 1 h is only around 7%, requiring 5 h to get a similar crystalline fraction than the one achieved with the thinner film. This means that the time required for full crystallization will be strongly determined by the Si layer thickness. Using a new fitting approach the Ni content within the films was also determined by SE and related to the silicon film thickness.  相似文献   

9.
Effusion measurements of hydrogen and of implanted helium are used to characterize the presence of voids in hydrogenated amorphous silicon (a-Si:H) materials as a function of substrate temperature, hydrogen content, etc. For undoped plasma-grown a-Si:H, interconnected voids are found to prevail at hydrogen concentrations exceeding 15–20 at.%, while isolated voids which act as helium traps appear at hydrogen concentrations  15 at.%. The concentration of such isolated voids is estimated to some 1018/cm3 for device-grade undoped a-Si:H deposited at a substrate temperature near 200 °C. Higher values are found for, e.g., doped material, hot wire grown a-Si:H and hydrogen-implanted crystalline Si. The results do not support recent suggestions of predominant incorporation of hydrogen in a-Si:H in (crystalline silicon type) divacancies, since such models predict a concentration of voids (which act as helium traps) in the range of 1021/cm3 and a correlation between void and hydrogen concentrations which is not observed.  相似文献   

10.
Using three electrode vacuum system for glow discharge of 5% SiH4 + 95% Ar gas mixture together with thermal evaporation of phosphorus or boric aced, the n- and p-type a-Si:H layers have been deposited. By co-evaporation of phosphorus or boric aced the conductivity of a-Si:H layers was changed in 10?11–10?3 Ω?1 cm?1 or 10?11 –10?8 Ω?1 cm?1 range, respectively. Blends of a-Si:H and tris-(8-hydroxyquinoline) aluminum (Alq3) have been vacuum-deposited by simultaneous glow discharge of 5% SiH4 + 95 % Ar gas mixture and thermal co-evaporation of Alq3. Photoluminescence spectrum of a-Si:H/Alq3 blend coincident with one of Alq3 was observed at room temperature.  相似文献   

11.
A roll-to-roll PECVD system for thin film silicon solar cells on steel foil has been developed by ECN in collaboration with Roth and Rau AG. It combines MW–PECVD for fast deposition of intrinsic Si and novel linear RF sources, which apply very mild deposition conditions, for the growth of doped Si layers. The RF and MW sources can be easily scaled up to deposition widths of up to 150 cm. Here, we report on n-type doping, achieved by RF–PECVD from a H2/SiH4/PH3 mixture in the reaction chamber. The best n-type a-Si:H layers showed Eact = 0.27 eV and σd = 2.7 × 10?3 S/cm. Also thin layers down to 20 nm were of device quality and were deposited at a rate of 0.4 Å/s. Furthermore, n-type μc-Si:H layers with thicknesses of 150 nm, with Eact = 0.034 eV and σd = 2 S/cm were grown. Good quality n-type μc-Si:H layers can be made for layer thicknesses down to 50 nm at a rate of 0.15 Å/s. To conclude, the novel RF source is well-suited for the growth of n-doped a-Si:H and μc-Si:H layers for roll-to-roll solar cell production.  相似文献   

12.
A Nd3 +-doped transparent oxyfluoride glass ceramic containing Ca5(PO4)3F nanocrystals was prepared by thermal treatment at the crystallization temperature for the precursor glass. The transmittances of the precursor glass and the glass ceramic with a thickness of about 2 mm are up to 84.7% and 77.4% in the visible range. The volume fraction of Ca5(PO4)3F nanocrystals in the glass ceramic is about 19% and the ingress fraction of Nd3 + ions into the Ca5(PO4)3F nanocrystals is about 32%. The peak absorption cross-section increases to 224% at 807 nm and the full width at half maximum for the 807 nm band decreases from 17.5 to 3.5 nm after the crystallization process. The peak stimulated emission cross-section increases from 1.89 × 10? 20 to 2.42 × 10? 20 cm2 at 1062 nm and the effective width of the emission line for the 1062 nm band decreases from 34 to 29 nm after the crystallization process. The improvement of spectroscopic properties indicates that the glass ceramic is potentially applicable as the 1.06 μm laser material.  相似文献   

13.
Hydrogenated amorphous silicon thin films doped with chalcogens (Se or S) were prepared by the decomposition of silane (SiH4) and H2Se/H2S gas mixtures in an RF plasma glow discharge on 7059 corning glass at a substrate temperature 230 °C. The illumination measurements were performed on these samples as a function of doping concentration, temperature and optical density. The activation energy varied with doping concentration and is higher in Se-doped than S-doped a-Si:H thin films due to a low defect density. From intensity versus photoconductivity data, it is observed that the addition of Se and S changes the recombination mechanism from monomolecular at low doping concentration films to bimolecular at higher doping levels. The photosensitivity (σph/σd) of a-Si, Se:H thin films decreases as the gas ratio H2Se/SiH4 increased from 10?4 to 10?1, while the photosensitivity of a-Si, S:H thin films increases as the gas ratio H2S/SiH4 increased from 6.8 × 10?7 to 1.0×10?4.  相似文献   

14.
In this paper, we present a three-dimensional nanorod solar cell design. As the backbone of the nanorod device, density-controlled zinc oxide (ZnO) nanorods were synthesized by a simple aqueous solution growth technique at 80 °C on ZnO thin film pre-coated glass substrate. The as-prepared ZnO nanorods were coated by an amorphous hydrogenated silicon (a-Si:H) light absorber layer to form a nanorod solar cell. The light management, current–voltage characteristics and corresponding external quantum efficiency of the solar cells were investigated. An energy conversion efficiency of 3.9% was achieved for the nanorod solar cells with an a-Si:H absorber layer thickness of 75 nm, which is significantly higher than the 2.6% and the 3.0% obtained for cells with the same a-Si:H absorber layer thickness on planar ZnO and on textured SnO2:F counterparts, respectively. A short-circuit current density of 11.6 mA/cm2 and correspondingly, a broad external quantum efficiency profile were achieved for the nanorod device. An absorbed light fraction higher than 80% in the wavelength range of 375–675 nm was also demonstrated for the nanorod solar cells, including a peak value of ~ 90% at 520–530 nm.  相似文献   

15.
We have fabricated and characterized diamond based heterojunctions composed of homoepitaxial diamond (B-doped film: p type) and hydrogenated amorphous silicon (a-Si:H film: n-type). All devices include an intrinsic amorphous silicon interface (i-a-Si:H). (J–V) characteristics of a-Si:H heterojunctions measured from 300 K to 460 K present a very high rectification ratio (in the range 108–109) and a current density of 10 mA/cm² under 2 V of forward bias. The reverse current up to ? 4 V is below the detection limit in the whole temperature range. The devices present two regimes of operation indicating that more than one mechanism governs the carrier transport. These characteristics are compared with a Schottky barrier diode (SBD) using a tungsten carbide metal on top of the p-type diamond as a Schottky contact. The SBD device exhibits J–V characteristic with an ideality factor n close to one and the heterojunction follows this trend for low bias voltages whereas for bias voltage above 1 V a second regime with larger ideality factors n ~ 3.6 is observed. These results point out the prominent role of transport mechanisms at heterointerface between the a-Si:H layers and the p-type doped diamond which degrades the current injection. The breakdown voltage reached ? 160 V indicating the good quality of the deposited layers.  相似文献   

16.
We report a quasi-analytical calculation describing the heterojunction between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) at equilibrium. It has been developed and used to determine the carrier sheet density in the strongly inverted layer at the a-Si:H/ c-Si interface. The model assumes an exponential band tail for the defect distribution in a-Si:H. The effects of the different parameters involved in the calculation are investigated in detail, such as the Fermi level position in a-Si:H, the density of states and the band offsets. The calculation was used to interpret temperature dependent planar conductance measurements carried out on (n) a-Si:H/ (p) c-Si and (p) a-Si:H/(n) c-Si structures, which allowed us to confirm a previous evaluation of the conduction band offset, ?EC = 0.18 ± 0.05 eV, and to evaluate the valence band offset: ?EV = 0.36 ± 0.05 eV at the a-Si:H/ c-Si heterojunction. The results are placed in the frame of recent publications.  相似文献   

17.
This paper reports on the development of an amorphous silicon cell used in the top cell of Micromorph® tandem solar modules produced in the pilot line of Oerlikon Solar in Trübbach — Switzerland. Tuning of the process parameters used for PECVD deposition of the absorber layers such as process pressure, RF power density, SiH4/H2 ratio, and substrate temperature can result in significant improvement in the material quality of the absorber layer and therefore in the performance and light induced degradation of the a-Si cell. We have measured the single layer properties of different absorber layers by infrared spectroscopy and have found a strong correlation between both the microstructure factor R and the H-content bonded to Si and the stabilized efficiency or relative degradation of the a-Si cells containing the corresponding absorber layers. A combination of absorber layers with superior material quality, adapted p-doped and buffer layers and ZnO front and back contacts with enhanced light trapping have achieved record values for the conversion efficiency of industrial thin a-Si single junction cells and modules. Our results show initial efficiencies on test cells prepared on 1.4 m2 substrates of over 11%, an active area efficiency of 10.5% for a champion 1.4 m2 a-Si single junction module and an 8.7% stabilized conversion efficiency for an industrial 1.4 m2 a-Si single junction champion module.  相似文献   

18.
We report silver metal enhanced near-IR and infrared-to-visible upconversion luminescence in Tm3+ doped 70GeS2–10Ga2S3–20CsCl (in mol. %) glasses. The metal embedded glasses are prepared under controlled crystallization. Upon 808 nm excitation three fold enhancement of emissions is observed in the visible (446 nm, 496 nm, and 532 nm) and near infrared (1230 nm, 1450 nm and 1480 nm) regions. The possible mechanism responsible for the enhanced luminescence is discussed.  相似文献   

19.
The influence of thermal annealing on the crystalline silicon surface passivating properties of selected amorphous silicon containing layer stacks (including intrinsic and doped films), as well as the correlation with silicon heterojunction solar cell performance has been investigated. All samples have been isochronally annealed for 1 h in an N2 ambient at temperatures between 150 °C and 300 °C in incremental steps of 15 °C. For intrinsic films and intrinsic/n-type stacks, an improvement in passivation quality is observed up to 255 °C and 270 °C, respectively, and a deterioration at higher temperatures. For intrinsic/n-type a-Si:H layer stacks, a maximum minority carrier lifetime of 13.3 ms at an injection level of 1015 cm? 3 has been measured. In contrast, for intrinsic/p-type a-Si:H layer stacks, a deterioration in passivation is observed upon annealing over the whole temperature range. Comparing the lifetime values and trends for the different layer stacks to the performance of the corresponding cells, it is inferred that the intrinsic/p-layer stack is limiting device performance. Furthermore, thermal annealing of p-type layers should be avoided entirely. We therefore propose an adapted processing sequence, leading to a substantial improvement in efficiency to 16.7%, well above the efficiency of 15.8% obtained with the ‘standard’ processing sequence.  相似文献   

20.
In case of amorphous silicon (a-Si) film deposition by catalytic chemical vapor deposition (Cat-CVD) method, a metal catalyzing wire is converted to silicide and this silicidation causes shortening lifetime of the catalyzing wire. In the present work, the effect of surface carbonization of catalyzing wire against silicide formation is investigated to obtain long-life catalyzer. Characteristics of a-Si film deposited by carbonized tungsten (W) catalyzer are also investigated. Silicide layer thickness formed on carbonized catalyzing wires after 60 min a-Si film deposition decreases to half of that on uncarbonized wires. Device quality a-Si films having defect density less than 4 × 1015 cm?3 are obtained by using carbonized W, indicating that surface carbonization of W catalyzer is effective process for industrial application of Cat-CVD method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号