首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Static rigid 2-D indentation of a linearly elastic half-plane in the presence of Coulomb friction which reverses its sign along the contact length is studied. The solution approach lies within the context of the mathematical theory of elastic contact mechanics. A rigid punch, having an unsymmetrical profile with respect to its apex and no concave regions, both slides over and indents slowly the surface of the deformable body. Both a normal and a tangential force may, therefore, be exerted on the punch. In such a situation, depending upon the punch profile and the relative magnitudes of the two external forces, a point in the contact zone may exist at which the surface friction changes direction. Moreover, this point of sign reversal may not coincide, in general, with the indentor's apex. This position and the positions of the contact zone edges can be determined only by first constructing a solution form containing the three problem's unspecified lengths, and then solving numerically a system of non-linear equations containing integrals not available in closed form.The mathematical procedure used to construct the solution deals with the Navier-Cauchy partial differential equations (plane-strain elastostatic field equations) supplied with boundary conditions of a mixed type. We succeed in formulating a second-kind Cauchy singular integral equation and solving it exactly by analytic-function theory methods.Representative numerical results are presented for two indentor profiles of practical interest—the parabola and the wedge.  相似文献   

2.
The axisymmetric problem of the contact interaction of a punch of polynomial profile and an elastic half-space when there is friction and partial adhesion in the contact area is considered. Using the Wiener–Hopf method the problem is reduced to an infinite system of algebraic Poincare–Koch equations, the solution of which is obtained in series. The radii of the contact area and of the adhesion zone, the distribution of the contact pressures and the indentation of the punch are obtained.  相似文献   

3.
Frictional contact mechanics analysis for a rigid moving punch of an arbitrary profile and a functionally graded coating/homogeneous substrate system is carried out. The rigid punch slides over the coating at a constant subsonic speed. Smooth variation of the shear modulus of the graded coating is defined by an exponential function and the variation of the Poisson's ratio is assumed negligible. Coulomb's friction law is adopted. Hence, tangential force is proportional to the normal applied force through the coefficient of friction. An analytical method is developed utilizing the singular integral equation approach. Governing partial differential equations are derived in accordance with the theory of elastodynamics. The mixed boundary value problem is reduced to a singular integral equation of the second kind, which is solved numerically by an expansion-collocation technique. Presented results illustrate the effects of punch speed, coefficient of friction, material inhomogeneity and coating thickness on contact stress distributions and stress intensity factors. Comparisons indicate that the difference between elastodynamic and elastostatic solutions tends to be quite larger especially at higher punch speeds. It is shown that use of the elastodynamic theory provides more realistic results in contact problems involving a moving punch.  相似文献   

4.
The indentation of a flat punch into a rigid-plastic half-space is modelled by a centred field of slip lines with rotation of the rectilinear free boundary about the corner point of the punch. Adjacent to the rectilinear boundary, there is a rigid, stress-free region which is calculated using a velocity hodograph and determines the curvature of the initial horizontal boundary of the half-space during indentation up to the steady-state stage of the motion of the punch in the unbounded rigid-plastic medium.  相似文献   

5.
Contact problems for a composite elastic wedge in the form of two joined wedge-shaped layers with different aperture angles joined by a sliding clamp, where the layer under the punch is incompressible, are studied in a three-dimensional formulation. Conditions for a sliding or rigid clamp or the absence of stresses are set up on one face of the composite wedge. The integral equations of the problems are derived taking account of the friction forces perpendicular to the edge of the wedge. The method of non-linear boundary integral equations of the Hammerstein type is used when the contact area is unknown. A regular asymptotic solution is constructed for an elliptic contact area. By virtue of the incompressibility of the material of the layer in contact with the punch, this solution retains the well known root singularity in the boundary of the contact area when account is taken of friction.  相似文献   

6.
Two axisymmetric problems of the indentation without friction of an elastic punch into the upper face of a layer when there is a uniform field of initial stresses in the layer are considered. The model of an isotropic incompressible non-linearly elastic material, specified by a Mooney potential, is used. Two cases are investigated: when the lower face of the layer is rigidly clamped after it is prestressed, and when the lower face of the layer is supported on a rigid base without friction after it is prestressed. It is assumed that the additional stresses due to the action of the punch on the layer are small compared with the initial stresses; this enables the problem of determining the additional stresses to be linearized. The problem is reduced to solving integral equations of the first kind with symmetrical irregular kernels relative to the pressure in the contact area. Approximate solutions of the integral equations are constructed by the method of orthogonal polynomials for large values of the parameter characterizing the relative layer thickness. The case of a punch with a plane base is considered as an example.  相似文献   

7.
The two-dimensional indentation of an elastic half-plane bya rigid punch under normal and tangential load is considered.The contact area is divided into an inner region with adhesion,the dimension of which is known beforehand, surrounded by tworegions in which inward slip takes place. The problem is formulatedin terms of a coupled pair of Cauchy type integrals for thenormal and shear stresses at the surface of the half-plane.In the case of friction-free slip these integrals are combinedto an inhomogeneous Fredholm equation which is solved by a methodof successive approximations. In the case when the inward slipis governed by Coulomb friction, the problem is solved by anumerical method.  相似文献   

8.
借助经典平面弹性复变函数方法,研究了单个刚性凸基底压头作用下,带任意形状裂纹十次对称二维准晶半平面弹性的无摩擦接触问题.利用十次对称二维准晶位移、应力的复变函数表达式, 带任意形状裂纹的准晶半平面弹性无摩擦接触问题被转换为可解的解析函数复合边值问题,进而简化成一类可解的Riemann边值问题.通过求解Riemann边值问题,得到了应力函数的封闭解, 并给出了裂纹端点处应力强度因子和压头下方准晶体表面任意点处接触应力的显式表达式.从压头下方接触应力的表达式可以看出, 接触应力在压头边缘和裂纹端点处具有奇异性.当忽略相位子场影响时, 该文所得结论与弹性材料对应结果一致.数值算例分别给出了单个平底刚性压头无摩擦压入带单个垂直裂纹和水平裂纹的十次对称二维准晶下半平面的结果.该文所得结论为准晶材料的应用提供了理论参考.  相似文献   

9.
3‐D quasi‐static contact problems for elastic wedges with Coulomb friction are reduced to integral equations and integral inequalities with unknown contact normal pressures. To obtain these equations and inequalities, Green's functions for the wedges, where one face of the wedges is either stress‐free or fixed, are needed. Using Fourier and Kontorovich–Lebedev integral transformations, all the stresses and displacements in the wedges can be constructed in terms of solutions of Fredholm integral equations of the second kind on the semiaxis. The Green's functions can be calculated as uniformly convergent power series in (1‐2ν), where νis Poisson's ratio. An exponential decay of the kernels and right‐hand sides of the Fredholm integral equations provides the applicability of the collocation method for simple and fast calculation of the Green's functions. For a half‐space, which is a special case of an elastic wedge, the kernels degenerate and the functions reduce to the well‐known Boussinesq and Cerruti solutions. Analysing the contact problems reveals that the Green's functions govern the kernels of the above mentioned integral equations and inequalities. Under the assumption that the punch has a smooth shape, the contact pressure is zero on the boundary of the unknown contact zone. Solving the contact problems with the help of the Galanov–Newton method, the normal contact pressure, the contact zone and the normal displacement around the contact zone can be determined simultaneously. In view of the numerical results, the influence of the friction forces on the punch force and the punch settlement is discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
This paper deals with the numerical solution of the wheel - rail rolling contact problems. The unilateral dynamic contact problem between a rigid wheel and a viscoelastic rail lying on a rigid foundation is considered. The contact with the generalized Coulomb friction law occurs at a portion of the boundary of the contacting bodies. The Coulomb friction model where the friction coefficient is assumed to be Lipschitz continuous function of the sliding velocity is assumed. Moreover Archard's law of wear in the contact zone is assumed. This contact problem is governed by the evolutionary variational inequality of the second order. Finite difference and finite element methods are used to discretize this dynamic contact problem. Numerical examples are provided. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The spatial (three-dimensional) problem of the wear of a wavy punch sliding over an elastic layer bonded to a rigid base, assuming there is complete contact between the punch and the layer, is considered. It is assumed that there is Coulomb friction and wear of the punch. An analytical expression for the contact pressure is constructed using the general Papkovich–Neuber solution, the harmonic functions in which are represented in the form of double Fourier integrals, after which the problem reduces to a linear system of differential equations. It is established that the harmonics constituting the shape of the punch and the contact pressure are shifted with respect to one another in time along the sliding line of the punch. The velocity of this shift depends on the longitudinal and transverse frequencies of the harmonic, that is, dispersion of the waves is observed.  相似文献   

12.
Three-dimensional contact problems for an elastic wedge, one face of which is reinforced with a Winkler-type coating with different boundary conditions on the other face of the wedge, are investigated. A power-law dependence of the normal displacement of the coating on the pressure is assumed. The contact area, the pressure in this region, and the relation between the force and the indentation of a punch are determined using the method of non-linear boundary integral equations and the method of successive approximations. The results of calculations are analysed for different values of the aperture angle of the wedge, the relative distance of the punch from the edge of the wedge, the ratio of the radii of curvature of the punch (an elliptic paraboloid), and the non-linearity factors of the coating. The results obtained are compared with the solutions of similar problems for a wedge without a coating.  相似文献   

13.
Solutions of three-dimensional boundary-value problems of the theory of elasticity are given for a wedge, on one face of which a concentrated shearing force is applied, parallel to its edge, while the other face is stress-free or is in a state of rigid or sliding clamping. The solutions are obtained using the method of integral transformations and the technique of reducing the boundary-value problem of the theory of elasticity to a Hilbert problem, as generalized by Vekua (functional equations with a shift of the argument when there are integral terms). Using these and previously obtained equations, quasi-static contact problems of the motion of a punch with friction at an arbitrary angle to the edge of the wedge are considered. In a similar way the contact area can move to the edge of a tooth in Novikov toothed gears. The method of non-linear boundary integral equations is used to investigate contact problems with an unknown contact area.  相似文献   

14.
The plane problem of the sliding contact of a punch with an elastic foundation when there is friction and wear is considered. Assuming the existence of a steady solution in a moving system of coordinates, relations are derived between the sliding velocity, the wear, the contact stresses and the displacements for an arbitrary dependence of the wear rate on the contact pressure. Taking into account the presence of a deformation component of the friction force, an equation is written for the balance of the mechanical energy for the punch - elastic base system considered. It is shown that the equality of the work of the external force in displacing the punch to the losses due to friction and the change in the shape of the foundation due to wear is satisfied when the work done by the contact stresses on the increments of the boundary displacements is equal to zero, and the frictional losses must be determined taking into account the non-uniformity of the distributions of the shear contact stresses and the sliding velocity in the contact area. Two special cases of the foundation in the form of a wide and narrow strip are considered, for which the total coefficient of friction is calculated, taking into account the deformation component of the friction force.  相似文献   

15.
The formulation of contact problems is extended to the case of moving punches and to the case when the state of the systems being investigated depends on the history of the change in the external actions. The quasi-static contact problem for a moving rigid rough punch and a single linearly deformable body is considered. A new iterational process is proposed for solving contact problems, taking friction in the contact area into account, and its convergence is proved. An algorithm of the solution, based on the boundary element method, is developed. Solutions of specific problems are given and analysed. Estimates of the difference of the solutions due to the difference in the impenetrability conditions and the difference in the steps of the loading parameter are obtained.  相似文献   

16.
The plane contact problem of the indentation of a rigid punch into a base-sucured elastic rectangle with stress-free sides is considered. The problem is solved by a method tested earlier and reduces to a system of two integral equations in functions describing the displacement of the surface of the rectangle outside the punch and the normal or shear stress on its base. These functions are sought in the form of the sum of trigonometric series and an exponential function with a root singularity. The ill-posed infinite systems of algebraic equations obtained as a result of this are regularized by introducing small positive parameters. Because the matrix elements of the systems, and also the contact stresses, are defined by poorly converging numerical and functional series, the previously developed method of summation of these series is used. The contact pressure distribution and the dimensionless indenting force are found. Examples of a plane punch calculation are given.  相似文献   

17.
This paper investigates the two-dimensional sliding frictional contact of a piezoelectric half-plane in the plane strain state under the action of a rigid flat or a triangular punch. It is assumed that the punch is a perfect electrical conductor with a constant electric potential. By using the Fourier integral transform technique and the superposition theorem, the problem is reduced to a pair of coupled Cauchy singular integral equations and then is numerically solved to determine the unknown contact pressure and surface electric charge distribution. The effects of the friction coefficient and electro-mechanical loads on the normal contact stress, normal electric displacement, in-plane stress and in-plane electric displacement are discussed in detail. It is found that the friction coefficient has a significant effect on the electro-mechanical sliding frictional contact behaviors of the piezoelectric materials.  相似文献   

18.
The indentation of an elastic half-space by an axisymmetricrigid punch under normal load is considered. The contact areais divided into an inner region with adhesion, the dimensionof which is known beforehand, surrounded by an annular slipzone. Two different cases of the problem, given by the assumptionsof friction-free slip or Coulomb friction, are treated. In thefriction-free case the problem is formulated in terms of a coupledpair of Cauchy type integrals for Abel transforms of the normaland shear stresses at the surface of the half-space. These arecombined to an inhomogeneous Fredholm equation which is solvedby a method of successive approximations, and the stresses areobtained as Abel transform inversions of its solution. In thecase with Coulomb friction the problem is solved by a numericalmethod based on piecewise constant approximations to the surfacestresses.  相似文献   

19.
The problem of the unilateral contact without friction for a punch, the face of which is characterized by a rapid change in the neighbourhood of the a priori unknown boundary of the contact area, is investigated. Asymptotic formulae are obtained for the function which describes the variation of the contact area and the contact-pressure density in the boundary-layer region. The problem of the behaviour of the contact pressures in the neighbourhood of a smoothed stress concentrator is considered.  相似文献   

20.
The contact interaction without friction of an absolutely rigid punch with an elastic half-space is considered. The external loads on the elastic medium are not fixed in advance, but a set containing all the admissible forms of applied forces is assumed to be specified. Using a guaranteed (minimax) approach, problems of optimizing the shape of the punch from the condition that its mass is a minimum are formulated. Inequality-type constraints, imposed on the total force and moments applied to the punch from the elastic-medium side, are assumed. Using Betti's reciprocal theorem and calculating the “worst” case for different types of constraints, the corresponding forces are determined and the optimum shape of the punch is obtained in analytical form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号