首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A.N. Trukhin  K.M. Golant  J. Teteris 《Journal of Non》2012,358(12-13):1538-1544
Optical absorption and photoluminescence of Ge-doped silica films fabricated by the surface-plasma chemical vapor deposition (SPCVD) are studied in the 2–8 eV spectral band. The deposited on silica substrate films of about 10 μm in thickness are composed as x·GeO2-(1-x)·SiO2 with x ranging from 0.02 to 1. It is found that all as‐deposited films do not luminesce under the excitation by a KrF (5 eV) excimer laser, thus indicating lack of oxygen deficient centers (ODCs) in them. After subsequent fusion of silicon containing (x < 1) films by a scanning focused CO2 laser beam absorption band centered at 5 eV as well as two luminescence bands centered at blue (3.1 eV) and UV (4.3 eV) wavelengths arise, highlighting the formation of the ODCs. The excitation of unfused SPCVD films by an ArF (6.4 eV) excimer laser yields a luminescence spectrum with two bands typical for the ODCs, but with a faster decay kinetics. Intensities of these bands grow up with samples cooling down to a temperature of 80–60 K. Unfused films excited by the ArF laser also demonstrate luminescence due to recombination of a trapped charge resulted from the excitation of localized electron states of the glass network. In the unfused GeO2 film luminescence related to a self-trapped exciton (STE) typical for GeO2 crystals with α-quartz structure is observed. The observed STE luminescence can be indicative of the crystalline fraction availability in the film. Whereas GeO2 crystals are known as not containing twofold coordinated germanium, a polycrystalline inclusion in the SPCVD GeO2 film serves as a factor explaining the absence of any spectroscopic manifestation of this type of defects in it even after fusion. On the other hand, lack of STE luminescence in other unfused films with x < 1 testifies truly amorphous state of the matter in them.  相似文献   

2.
By annealing fused silica coated with ultra-thin Ag film, silica nano-rings and nano-hollows were prepared on the substrate. The Ag nano-particles attached on the wall of nano-hollows or embedded in silica were confirmed with energy dispersive spectroscopy and transmission electron microscopy. Besides the well-known characteristic stretching bands of silica, three novel stretching bands around 1579, 1320 and 270 cm?1 were found in the annealed Ag-coated silica by Raman scattering spectroscopy, which have been attributed to the O2 in ground state, O–O and metal–oxygen stretching bands, respectively. The formation mechanism of nano-rings and nano-hollows has been discussed based on the experimental results. An ultraviolet photoluminescence emission of 360–370 nm from annealed Ag-coated silica was found when the excitations were 230 nm and 280 nm or longer. The possible photoluminescence emission mechanism has been discussed, which suggests that oxygen excess defects are responsible for the photoluminescence emission, and photoexcitation occurs in the silica as well as in Ag+ ions.  相似文献   

3.
A CW CO2 laser ablation technique is used to form buried waveguides in planar silica films. It is shown that the refractive index of a silica thin film is reduced sufficiently adjacent to the laser processed region to allow the fabrication of low loss waveguides. The refractive index distribution of these structures is measured using the reflectance of a focussed spot from the surface of the films. The change in refractive index is measured to be of the order of the core cladding refractive index difference of typical single mode waveguides. The spatial resolution of the reflectance technique is 1.3 μm with a refractive index resolution of ±5 × 10?4. Devices such as 1 × 2 and 1 × 4 multi-mode interference (MMI) splitters have also been demonstrated and shown to exhibit low transmission losses.  相似文献   

4.
《Journal of Non》2006,352(32-35):3463-3468
Aware of the difficulties in applying sol–gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol–gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the 4I13/2  4I15/2 transition of erbium ions shows a broad band centered at 1.53 μm with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed.  相似文献   

5.
《Journal of Non》2006,352(28-29):3134-3139
X-ray photoelectron spectra (XPS) of thin SiO2 layers grown by pulsed Nd:YAG laser at a substrate temperature of 748 K are presented. The peak decomposition technique combined with depth profiling is employed to identify the composition and chemical states of the film structure. It is established that the oxide is non-stoichiometric, and contains all oxidation states of Si in different amounts throughout the film. The interface Si/laser-grown oxide is not abrupt, and the coexistence of Si2O3 and Si2O suboxides in a relatively wide interfacial region is found. It is concluded that post-oxidation annealing is necessary in order to improve the microstructure of both oxide and near interface region.  相似文献   

6.
Microcrystalline silicon (μc-Si) films have been deposited on PDMS as well as on PEN substrate. Excimer laser annealing was used to improve the crystalline structure and so to obtain high mobility TFTs. The effect of the laser annealing on the crystalline structure of silicon films is studied using different characterization techniques and discussed. Mobility values of 60 cm2/V s with PDMS and 46 cm2/V s with PEN are obtained.  相似文献   

7.
《Journal of Crystal Growth》2003,247(3-4):497-504
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH3COO)2 2H2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min−1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.  相似文献   

8.
《Journal of Non》2007,353(22-23):2244-2249
Transparent conductive oxides such as indium tin oxide (ITO) are interesting materials due to their wide-band gaps, high visible light transmittance, high infrared reflectance, high electrical conductivity, hardness and chemical inertness. ITO films were fabricated on soda lime glass substrates by using high-intensity pulsed ion beam (HIPIB) technique. The as-deposited films comprised of partially crystallized In2O3 and after annealing at 500 °C for 1 h the film changed to polycrystalline phase. After annealing carrier concentration and Hall mobility increased while specific resistance and sheet resistance decreased quickly; and this trend was also observed when film thickness increased up to 300 nm for the post-annealed samples. Further increase in thickness of the film changed the electrical properties slightly. Atomic force microscopy (AFM) revealed that roughness decreased after 500 °C annealing for 1 h in air, except for the film of 65 nm thick. The thickness of the film which relates to the carrier concentration and mobility, degree of crystallization, size of the grain, and connections among grains in film are main factors to determine film’s electrical properties.  相似文献   

9.
ZnO@mesoporous silica nanocomposite was prepared by the impregnation of a CMI-1 material in a Zn(NO3)2 solution followed by calcination under O2. Intensive characterization was carried out by N2 adsorption–desorption measurements, scanning and transmission electron microscopy. The optical properties of the ZnO@mesoporous silica nanocomposite were studied by photoluminescence spectroscopy. Quantum Size Effect was firstly demonstrated by subjecting the sample to a 254 nm excitation light, and was further confirmed by using a 680 nm excitation laser beam, which implies a two-photon absorption process. By focusing the 680 nm laser beam on different places in the sample, a very localized random laser effect, also induced by a two-photon absorption process, was detected.  相似文献   

10.
The 40 kg test masses of the Advanced LIGO interferometric gravitational wave detector will each be suspended on four fibres fabricated from Heraeus Suprasil synthetic silica glass. The ultimate tensile breaking stress and fracturing process of loaded silica fibres was investigated in order to develop the technology required to suspend the test mass in a robust and safe manner. The majority of the fibres in this study were pulled by hand in a H2 ? O2 flame; for comparison, fibres were also pulled on a CO2 laser machine. Carefully prepared fibres were shown to be pristine, i.e. free of surface cracks. Such fibres exhibited breaking strengths as high as 5 ? 6 GPa. To analyse the mechanisms of fracture a high speed photographic setup was developed in addition to the use of a high speed video camera. The pristine fibres break in the zone of maximal stress as expected in the model of flawless fibres. Some fibres break at a lower stress and these fractures occur at the fibre ends. This type of fracture is related to the thermal stress induced by local heating which was used to align the fibre in the test structure. The most likely fracture mechanism is based on a thermo-kinetic approach.  相似文献   

11.
《Journal of Non》2005,351(49-51):3693-3698
Transparent crack-free and bubble-free Fe3+ doped SiO2 nanostructured gel-glasses were obtained by the sol–gel process. The process involves the hydrolysis and condensation of an appropriate molar ratio of tetraethoxysilane (TEOS), absolute ethanol, nitric acid and ferric nitrate, followed by stepwise annealing at temperatures ranging from 110 °C to 1000 °C. The structural variation of the gel-glasses and their influence on physical properties during annealing has been studied. It has been observed that monolithicity and chemical environment around Fe3+ in the gel-glasses are strongly dependent on the annealing temperatures. The colour of gel-glass samples is different for different annealing temperatures, mainly due to the different co-ordination state of Fe3+ and the generation of Fe2O3 colloids of size 20–60 nm in the silica matrix. The annealing process facilitates the tuning of the UV–visible transmission cut-off edge in high optical quality Fe3+ doped silica gel-glasses. A marked difference in the magnetic properties of these glasses is also observed with annealing temperatures.  相似文献   

12.
《Journal of Non》2007,353(5-7):522-525
The kinetics of E′ centers ( Si) induced by 4.7 eV pulsed laser irradiation in dry fused silica was investigated by in situ optical absorption spectroscopy. The stability of the defects, conditioned by reaction with mobile hydrogen of radiolytic origin, is discussed and compared to results of similar experiments performed on wet fused silica. A portion of E′ centers and hydrogen are most likely generated by laser-induced breaking of Si–H precursors, while an additional fraction of the paramagnetic centers arise from another formation mechanism. Both typologies of E′ centers participate in the reaction with H2 leading to the post-irradiation decay of the defects. This annealing process is slowed down on decreasing temperature and is frozen at T = 200 K, consistently with the diffusion properties of H2 in silica.  相似文献   

13.
Creation of point defects by ArF (6.4 eV) and F2 laser (7.9 eV) irradiation in synthetic “wet” silica glass thermally loaded with interstitial O2 molecules was studied by optical absorption, electron paramagnetic resonance and infrared absorption. The presence of excess oxygen caused a significant increase of laser-induced ultraviolet (UV) absorption, which was 4 times (7.9 eV-irradiation) and > 20 times stronger (ArF irradiation) as compared to O2-free samples. The spectral shape of photoinduced absorption nearly completely coincided with the spectral shape of oxygen dangling bonds (NBOHC) in 3 to 6.5 eV regions. The contribution of Si dangling bonds (E' centers) was less than few % and was not dependent on oxygen content. Peroxy radical defects were not detected. The photoinduced NBOHCs thermally decayed at 400...500 C. However, a subsequent brief 7.9 eV irradiation restored their concentration up to 70%. This sensitization can be in part attributed to generation of interstitial Cl2 and HCl. These data show that oxygen stoichiometry is an important factor for maximizing laser toughness of wet silica.  相似文献   

14.
《Journal of Non》2006,352(32-35):3522-3524
The controlled synthesis of PbSe quantum dots in Se-doped glass matrix (SiO2–Na2CO3–Al2O3–PbO2–B2O3) with narrow size distributions was achieved. Quantum dot size can be manipulated by tuning annealing time in the process of thermal treatment. The PbSe QD sizes estimated by 4 × 4 k · p theory were in very good agreement with the measurements of atomic force microscopy.  相似文献   

15.
《Journal of Non》2007,353(44-46):4203-4207
In this study, we successfully synthesized the bulk of dense mesoporous silica (FSM) bodies by a short-term hydrothermal hot-pressing (HHP) method. It was thought that these dense bodies were achieved by solution/precipitation mechanism during HHP. Bulk pieces with the dimension in the range of centimeters in diameter possessed a high surface area of over 1000 m2/g and sharp distribution of mesopores with an average diameter of approximately 2.4 nm. This successful synthesis of bulky mesoporous silica will expand the capabilities of application to various fields, for example, gas separation (CO2 and H2 etc.) and catalysis.  相似文献   

16.
Nanocrystalline diamond film was deposited on the substrate of Mo–Re alloy foil by using a hot filament chemical vapor deposition (HFCVD) method. The morphology, band structures and crystalline structure of the film were analysed by scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometer (XRD), respectively. The results show that the thickness of the diamond film is about 300 nm after 1 h deposition. There is a 2H-Mo2C layer between the diamond film and the Mo–Re substrate. The values of a and the ratio c/a of Mo2C are 3.003 and 1.579 Å, respectively. This Mo2C layer might be formed due to carbon atoms in the gas phase diffusing into the Mo–Re alloy.  相似文献   

17.
Application of non-contact and rapid laser technique, which is minimally invasive, non-contaminant and efficient method, for ancient glass investigation and cleaning is highly desirable for restoration purposes. Irradiation of Roman glass dated from 1st to 4th/5th century AD with TEA CO2 (wavelength 10.6 μm; pulse duration tp = 100 ns), Nd:YAG (wavelength 1064 nm and 532 nm; tp = 150 ps) and ruby laser (wavelength 694 nm; tp = 30 ns) in air ambience was studied. For all three lasers, moderate energy densities (15–30 J/cm2) induced significant changes of morphology — from superficial exfoliation and occurrence of mosaic structure after few pulses to deep damages and hydrodynamic features after higher number of accumulated shots. Irradiation with moderate energy density, accompanied with plasma appearance in front of the samples, is convenient for numerous potential applications, particularly surface elemental analysis such as laser induced breakdown spectroscopy. On the other hand, lower densities are more suitable for Roman glass cleaning. Calculations of Roman glass surface temperature have shown that pulsed CO2 laser is favorable for surface cleaning and optimal fluence is ~ 2 J/cm2. This was confirmed by additional experiments for fluences 1.5 and 3 J/cm2. Morphological changes on the Roman glass surface induced by lasers were studied by optical microscopy (OM) and scanning electron microscopy (SEM). The composition of Roman glass was determined by energy dispersive X-ray analysis (EDX) and inductively coupled plasma (ICP) method. Chemical analysis confirmed that the investigated glass dates from the Roman period.  相似文献   

18.
《Journal of Non》2006,352(32-35):3633-3635
PbS nanocrystals embedded in glass matrix (SiO2–Na2CO3–Al2O3–B2O3) were synthesized by means of the fusion method using four different PbS concentrations (0.05, 0.1, 1.5, and 2.0 wt%). Thermal treatment was performed at 550 °C with annealing time of 6 h. Measurements of optical absorption and photoluminescence were carried out as a function of PbS concentration. It is argued that, with the same thermal treatment and annealing time, the formation of large nanocrystals becomes easier as the PbS concentration increases. Optical absorption spectra showed that the band-gap energy increases as the PbS concentration decreases, making this relationship important in the obtainment of a desired band-gap in PbS-doped glasses.  相似文献   

19.
《Journal of Non》2007,353(11-12):1060-1064
The crystallization kinetics in Ni50.54Ti49.46 film was studied by differential scanning calorimetry through continuous heating and isothermal annealing. The activation energy for crystallization was determined to be 411 and 315 kJ/mol by Kissinger and Augis & Bennett method, respectively. In the isothermal annealing study, The Avrami exponents were in the range of 2.63–3.12 between 793 and 823 K, suggesting that the isothermal annealing was governed by diffusion-controlled three-dimensional growth for Ni50.54Ti49.46 thin films.  相似文献   

20.
《Journal of Non》2007,353(5-7):510-513
We investigated the correlation between the luminescence properties and the surface structures of submicron silica particles prepared by the Stöber method. After annealing in a non-oxidizing atmosphere, the submicron-sized silica particles show a broad photoluminescence (PL) band at 500–540 nm by excitation at an ultraviolet wavelengths (254 and 365 nm), and the one at the 600 nm by excitation an Ar+ laser (488 nm). The PL appeared to result from the removal of impurities and subsequent formation of several luminescent structures on the internal surface of the primary particles by thermal annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号