首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The material behaviour of rubber at the micro level is usually described by means of statistical mechanics. In particular, the Neo-Hooke model has been derived in this fashion. The micromechanical modelling can be extended to include also the breaking and reforming of chains. One possible approach at this level is the so-called transient network theory. Using certain assumptions for the chain distributions, one arrives at a continuum mechanical model of finite viscoelasticity which is based on the multiplicative decomposition of the deformation gradient. This means that the inelastic part of the deformation is regarded as an elastic isomorphism. Further, the considerations at the micro level give information about the temperature dependence of the mechanical material parameters. For instance, it can be shown easily that the shear modulus depends approximately linearly on the temperature. This fact has important consequences for thermo-mechanical coupling which have not yet been discussed in detail in the literature.  相似文献   

2.
A gel, an aggregate of polymers with solvents, has dual attributes of solid and liquid as solvent migrates in and out of the polymer network. Indentation has recently been used to characterize the mechanical properties of gels. This paper evaluates the effects of large deformation and material nonlinearity on gel indentation through theoretical modeling and finite element analysis. It is found that large deformation significantly affects the interpretation of the experimental observations and the classical relation between indentation force and depth has limitations for large deformation. The material nonlinearity does not play a very important role on indentation experiment so that the poroelasticity is a good approximation. Based on these observations, this paper proposes an alternative approach to measure the mechanical properties of gels, namely, uniaxial compression experiment.  相似文献   

3.
With the increasing number of requirements on joinings, it gets more and more important to understand and predict an assemblies properties. Nowadays, in industrial applications, combinations of different materials get more common. In most of those cases, it is, besides other advantages, useful to connect such parts with adhesives to avoid local cells. Thus, the knowledge about the mechanical behaviour of adhesives over the whole time of utilisation is an essential element of engineering. As it is well known, ageing due to environmental influences such as oxygen, radiation, ozone and others plays a major role in polymers properties. So, for the prediction of applicability over the whole lifetime of a technical component, the change in mechanical properties due to ageing is necessary. In this contribution, we introduce a material model which takes into account the internal structure of an adhesive. Therefore, an interphase zone is introduced. In the interphase, which is developed due to the contact of an adhesive with an adherent, the materials properties change continuously from the surface to the centre of the joint, where the polymer is in a bulky state. Built up on this geometry dependency, the materials ageing as a function of the position is described. To model the change of the polymers state, we use a parameter representing chain scission processes and another one for the reformation of a new network. In a last step, the model is transferred into a finite element code for exemplary calculations.  相似文献   

4.
Photomechanics of light-activated polymers   总被引:1,自引:0,他引:1  
Light-activated polymers are an exciting class of modern materials that respond mechanically when irradiated by light at particular wavelengths. While details of the mechanisms that connect the optical excitation to mechanical behavior are complex and differ from material to material, there is sufficient commonality among them to permit the development of a generalized modeling framework to describe the photomechanics. The features shared by light-activated polymers involve light interacting with the material, which triggers photochemical reactions that alter the structure of the crosslinked polymer network. Many such structural alterations result in an evolution of the polymer network, and subsequent macroscopic deformation. When this process is appropriately executed it can enable a photomechanical shape-memory effect. In this paper, we develop a three-dimensional finite-deformation modeling framework to describe the photomechanical response of light-activated polymer systems. This framework integrates four coupled phenomena that contribute to macroscopic photomechanical behavior: photophysics, photochemistry, chemomechanical coupling, and mechanical deformation. The chemomechanical coupling consists of chemically induced structural alterations of the crosslinked network that result in subsequent deformation. We describe this behavior through a decomposition of the crosslinked network into two components consisting of an original network and a photochemically altered network; both evolve during photomechanical deformation. The modeling framework presented in this paper is sufficiently general that it is applicable to light-activated polymer systems that operate with various mechanisms in each of the four areas. Using this modeling approach, we develop constitutive models for two recently developed light-activated polymer systems [Lendlein, A., Hongyan, J., Junger, O., Langer, R., 2005. Light-induced shape-memory polymers. Nature 434 (7035) 879; Scott, T.F., Schneider, A.D., Cook, W.D., Bowman, C.N., 2005. Photoinduced plasticity in crosslinked polymers. Science 308 (5728) 1615]. For the material developed by Scott and his co-workers we validate our model by measuring and numerically simulating photo-induced stress relaxation and bending deformation and obtain good agreement between measurements and predictions. Finally, we use the model to study the effects of photomechanical parameters (applied strain magnitude, irradiation time and intensity, and photoabsorber concentration) and the behavior of the network evolution rule on the material response.  相似文献   

5.
胡平 《力学学报》1998,30(3):354-362
给出一种可描述预延伸各向异性特性的背应力张量三维表达式,引入大变形弹塑性有限元驱动应力法,结合BPA8 链细观分子网络模型,模拟了预延伸各向异性非晶聚合物材料平面应变拉伸变形局部化力学行为.详细讨论了预延伸比(InitialDrawingRatio;IDR)和预延伸方向(InitialDrawingDirection;IDD)对变形抗力、颈缩规律、剪切带方向以及试件中心部位链延伸比的影响.  相似文献   

6.
将基于应变软化玻璃状高分子材料微观特征建立的BPA8-链分子网络模型引入UpdatingLagrange有限元方法,建立了适于变形局部化分析的大变形弹塑性有限元驱动应力法.在此基础上,数值模拟了初始各向同性高分子材料平面应变拉伸变形局部化的传播过程.探讨了BPA模型对具有加工硬化特性的结晶性高分子材料变形分析的适应性;分析了局部化传播过程中颈缩截面的非均匀应力三轴效应;最后,讨论了网格尺寸以及初始几何不均匀性对颈缩扩散以及应力三轴效应的影响  相似文献   

7.
8.
Light-activated polymers can undergo complex deformation in response to the combination of mechanical and optical stimuli. These materials are attractive for remote actuation and sensing applications. However, the behavior of such materials subjected to photomechanical patterning is not well understood. In this paper we consider a polymer that operates by photoactivated stress relaxation; at the molecular level, photoinitiation of residual initiator molecules generate free radicals that break and then reform in-chain functionalities of stretched chains in an elastomeric network, which results in macroscopic stress relaxation. We carry out experiments and finite element calculations that demonstrate the sequence of deformation events culminating in the formation of a buckled spot as a result of biaxially stretching the elastomeric film then irradiating a circular region followed by releasing the mechanical constraint. In order to better understand the photomechanics, we analyze a simpler model problem wherein a linear elastic, stress relaxing disk is subjected to (i) radial extension, (ii) irradiation of a concentric circular region, and (iii) release of the applied displacements in (i), which results in deformation and stress redistribution. In the final step, the deformation may transition from planar to buckling out of the plane depending on system parameters. Companion finite element calculations are performed against which our analytical results are in good agreement. Although not directly comparable, the analytic model qualitatively agrees with the experiments. The results of this work provide a useful foundation from which to explore more interesting behavior of periodically photo-mechanically patterned films and other more challenging actuation problems.  相似文献   

9.
An elastomeric gel is a cross-linked polymer network swollen with a solvent, and certain gels can undergo large reversible volume changes as they are cycled about a critical temperature. We have developed a continuum-level theory to describe the coupled mechanical deformation, fluid permeation, and heat transfer of such thermally responsive gels. In discussing special constitutive equations we limit our attention to isotropic materials, and consider a model based on a Flory–Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled with a non-Gaussian statistical–mechanical model for the change in configurational entropy—a model which accounts for the limited extensibility of polymer chains. We have numerically implemented our theory in a finite element program. We show that our theory is capable of simulating swelling, squeezing of fluid by applied mechanical forces, and thermally responsive swelling/de-swelling of such materials.  相似文献   

10.
The structure of a skeletal muscle is dominated by its hierarchical architecture in which thousands of muscle fibres are arranged within a connective tissue network. The single muscle fibre consists of many force-producing cells, known as sarcomeres, which contribute to the contraction of the whole muscle. There are a lot of questions concerning the optimisation of muscle strength and agility. To answer these questions, numerical testing tools, e.g. in the form of finite element models can be an adequate alternative to standard experimental investigations. The present approach is crucially based on the use of the finite element method. The material behaviour of the muscle is additively split into a so-called active and a passive part. To describe the passive part special unit cells consisting of one tetrahedral element and six truss elements have been derived. Embedded into these unit cells are non-linear truss elements which represent bundles of muscle fibres. Besides the representation of the material model, this contribution focuses on the application to anatomically based 3D problems, as the animal soleus muscle of the rat.  相似文献   

11.
Constitutive equations are derived for the mechanical response of polymers at three-dimensional deformations with finite strains. A polymer is treated as an incompressible network of flexible chains with free ends whose motion at the micro-level is constrained by a random number of slip-links. The slip-links move affinely with macro-deformation, whereas chains can slide with respect to slip-links. When a free end of a chain slides through a slip-link, the slip-link disappears. Stress–strain relations are developed by using the laws of thermodynamics. They involve only one material constant with a transparent physical meaning.  相似文献   

12.
13.
In many glassy amorphous polymers, localisation of deformation during loading leads to crazes. Crazes are crack like features whose faces are bridged either by fibrils or a cellular network of voids and fibrils. While formation of crazes is aided by the presence of surface imperfections and embedded dust particles, in this work, we focus on intrinsic crazes that form spontaneously in the volume of the material. We perform carefully designed molecular dynamics simulations on well equilibrated samples of a model polymer with a view to gaining insights into certain incompletely understood aspects of the crazing process. These include genesis of the early nanovoids leading to craze nucleation, mechanisms of stabilising the cellular or fibrillar structure and the competition between chain scission and chain disentanglement in causing the final breakdown of the craze. Additionally, we identify and enumerate clusters of entanglement points with high functionality as effective topological constraints on macromolecular chains. We show that regions with low density of entanglement clusters serve as sites for nanovoid nucleation under high mean stress. Growth occurs by the repeated triggering of cavitation instabilities above a growing void. The growth of the void is aided by disentanglement in and flow of entanglements away from the cavitating region. Finally, for the chain lengths chosen, scission serves to supply short chains to the growing craze but breakdown occurs by complete disentanglement of the chains. In fact, most of the energy supplied to the material seems to be used in causing disentanglements and very little energy is required to create a stable fibril.  相似文献   

14.
The mechanical stress-strain behaviour of polyethylene (PE) materials under finite strains is studied both experimentally and theoretically. In order to gain insight into the structure and physical properties of investigated PE materials, a series of thermal (DSC and DMTA) and microstructural (small-angle X-ray scattering and AFM) characterizations have been undertaken. The influence of crystallinity on the various features of the tensile stress-strain response is considered over a large strain range, implying thermoplastic-like to elastomer-like mechanical behaviour. A physically-based hyperelastic-viscoplastic approach was adopted to develop a pertinent model for describing the mechanical behaviour of PE materials under finite strains. The semicrystalline polymer is being treated as a heterogeneous medium, and the model is based on a two-phase representation of the microstructure. The effective contribution of the crystalline and amorphous phases to the overall intermolecular resistance to deformation is treated in a composite framework, and coupled to a molecular network resistance to stretching and chain orientation capturing the overall strain hardening response. In order to extract the individual constitutive response of crystalline and amorphous phases, a proper identification scheme based on a deterministic approach was elaborated using the tensile test data of PE materials under different strain rates. Comparisons between the constitutive model and experiments show fair agreement over a wide range of crystallinities (from 15% to 72%) and strain rates. The constitutive model is found to successfully capture the important features of the observed monotonic stress-strain response: the thermoplastic-like behaviour for high crystallinity includes a stiff initial response, a yield-like event followed by a gradual increase of strain hardening at very large strains; for the elastomer-like behaviour observed in the low crystallinity material, the strain hardening response is largely predominant. Strain recovery upon unloading increases with decreasing crystallinity: this is quantitatively well reproduced for high crystallinity materials, whereas predictions significantly deviate from experiments at low crystallinity. Model refinements are finally proposed in order to improve the ability of the constitutive equations to predict the nonlinear unloading response whatever the crystal content.  相似文献   

15.
通过扭转试验对高聚物注浆材料剪切性能进行试验研究,并在扫描电子显微镜(scanning electron microscope, SEM) 下观测了试件断面处胞体形状破坏特征,在此基础上通过有限元数值模拟,对其剪切变形力学响应特征及剪应力分布规律进行了研究。结果表明:密度对高聚物材料的剪切强度及剪切模量影响显著,且随着高聚物材料密度的增加,其剪切强度和剪切模量被显著提升;高聚物材料胞体分布遵循能量最低原理,密度越大,胞体表面积越小,表面能越小,体系越稳定;面心立方体堆砌模型可以较好模拟材料剪切变形行为,且密度越大,拟合效果越好。  相似文献   

16.
A model is presented that calculates the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular structure. The model is based upon the premise that mechanical properties are a direct consequence of energy stored and energy dissipated during deformation of a material. This premise is transformed into a consistent set of structure–property relations for the equation of state and the engineering constitutive relations in a polymer by quantifying energy storage and loss at the molecular level of interactions between characteristic groups of atoms in a polymer. The constitutive relations are formulated as a set of analytical equations that predict properties directly in terms of a small set of structural parameters that can be calculated directly and independently from the chemical composition and morphology of a polymer.  相似文献   

17.
聚合物一般由随机分布的大分子链组成,分子链的分布、缠绕、交联等微结构状态显著影响聚合物的力学和物理性能。本文通过数据驱动方法,建立了聚合物分子链微结构-力学性能关系。使用有限元方法建立了两种分子链的随机微结构模型并得到了其力学性能。基于微结构-力学性能关系建立数据集,以聚合物的随机分子链微结构为输入,以聚合物的弹性刚度为响应输出,进行数据驱动模型的训练和验证。得到了精度满意的微结构-力学性能关系的分析结果。结果表明,通过数据驱动方法研究聚合物的弹性刚度问题是可靠的。  相似文献   

18.
Thin polymer layers on substrates have a wide range of application in important areas. However, it is impossible to measure the mechanical properties with the traditional testing methods. Recently, nanoindentation became a new but primary testing technique of thin layers. In the present work, based on a finite element model of contact mechanics and hyperelastic materials, nanoindentation of polymer layers is simulated with the finite element code ABAQUS?. Three often used hyperelastic models, that is, the neo-Hookean, Mooney–Rivlin and Yeoh models are investigated. The behaviour of these three models is compared to each other in different boundary value problems of nanoindentation in order to get some feeling of the different behaviour of various hyperelastic models under nanoindentation. In contrast to the traditional analytical method, the penetration depth is not restrained to avoid the influence of the substrate. A parameter re-identification strategy is employed to extract the parameters of the material models at small and finite deformation based on the principle of biological evolution. Furthermore, it is investigated how large the penetration depth has to be chosen in order to distinguish different models in reference to the load–displacement curves. Finally, the possibility is discussed of describing the data obtained by a non-linear complex model using the relatively simple approach based on the neo-Hookean model.  相似文献   

19.
Based on the finite element displacement method, a finite element method on the analysis of mechanical behaviour of plane elastic materials is proposed in this paper. By using this method and the corresponding computational program, the material behaviour of any unknown plane elastic material can be determined and all the elastic constants can be calculated.  相似文献   

20.
The viscoelastic behavior of an amorphous shape memory polymer network and its dependence on time and temperature were measured by dynamic mechanical analysis. The resulting thermo-mechanical behavior was modeled and implemented in a commercial finite element code. The ability of the resulting thermomechanical model to simulate and, eventually, predict the shape storage and shape recovery of the material was evaluated against experimental shape memory thermomechanical torsion data in a large deformation regimen. The simulations showed excellent agreement with experimental shape memory thermomechanical cycle data. This demonstrates the dependence of the shape recovery on time and temperature. The results suggest that accurate predictions of the shape recovery of any amorphous polymer networks under any thermomechanical conditions combination solely depends on considering the material viscoelasticity and its time–temperature dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号