首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influences of elastic substrate on the indentation force, contact radius, electric potential and electric charge responses of piezoelectric film/substrate systems are investigated by the integral transform method. The film is assumed to be ideally bonded to the substrate and the contact interaction between the indenter and the film is assumed to be frictionless, with three kinds of axisymmetric insulating and conducting indenters (i.e., punch, cone and sphere) considered. Obtained results show that when the ratio of the contact radius to the film thickness is close to zero, the influences of the elastic substrate disappear and the indentation behaviors converge to the piezoelectric half space solutions while the indentation responses approach the corresponding ones of elastic half space as the ratio gets to infinity. The transition between the piezoelectric and the elastic half space indentation solutions for the film/substrate system is quantified in terms of the film thickness and the elasticity of the substrate. Finite element analysis on an insulating sphere indentation is conducted to verify the numerical calculations and good agreement is observed. The obtained results are believed to be useful for developing experimental techniques to extract the material properties of piezoelectric film/substrate systems.  相似文献   

2.
3.
In this paper we consider the problem of determining the distribution of stress in the neighbourhood of a crack in an infinitely long strip bonded to semi-infinite elastic planes on either side. By the use of Fourier transforms we reduce the problem to solving a single Fredholm integral equation of the second kind. Analytical expressions up to the order of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiabes7aKnaaCaaaleqabaGaeyOeI0IaaGym% aiaaicdaaaaaaa!41AF!\[\delta ^{ - 10} \], where 2 is the thickness of the strip for 1 are derived for the shape of the deformed crack and for the crack energy. Some numerical results have been displayed graphically.
Zusammenfassung In dieser Arbeit betrachten wir das Problem der Spannungsverteilung in der Nachbarschaft eines Sprunges auf ethem unendlich langen Band welches an beiden Seiten an halbseitig-unendliche elastische Platten aufgeheftet ist. Mit Hilfe von Fourier-Transformationen reduzieren wir das Problem zu einer einzelnen Fredholm Integralgleichung der zweiten Art. Für die Sprung-Energie und die Gestalt des deformierten Sprunges leiten wir analytische Ausdrücke bis zur Ordnung % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiabes7aKnaaCaaaleqabaGaeyOeI0IaaGym% aiaaicdaaaaaaa!41AF!\[\delta ^{ - 10} \] her, wobei 2 für 1 die Dicke des Bandes ist. Einige numerische Resultate haben wir graphisch veranschaulicht.


This work was supported by National Research Council of Canada through NRC-Grant No. A4177. This work was completed while the author was visiting the University of Glasgow.  相似文献   

4.
非线性压电效应下压电弯曲执行器的动力分析   总被引:4,自引:1,他引:3  
姚林泉  丁睿 《力学学报》2005,37(2):183-189
研究压电弯曲执行器在强电场作用下的非线性动力行为.考虑电致伸缩和电致弹性的非线性压电效应,导出了压电悬臂执行器变刚度的弯曲振动控制方程.利用非定常振动的渐近理论,讨论了弯曲压电执行器的动力特征.根据目前的非线性模型可以计算压电悬臂执行器的固有共振频率与电场的变化关系.结果表明压电执行器端头挠度谐振幅度随作用电场振幅的增大而增大,以及力学品质因数随电场振幅的增大而减少,并且与实验结果非常吻合.通过数值比较得到在电场频率随时间变化非常缓慢的情况下非定常振动问题可以近似地用定常振动来处理.  相似文献   

5.
Summary  The steady-state of a propagation eccentric crack in a piezoelectric ceramic strip bonded between two elastic materials under combined anti-plane mechanical shear and in-plane electrical loadings is considered in this paper. The analysis based on the integral transform approach is conducted on the permeable crack condition. Field intensity factors and energy release rate are obtained in terms of a Fredholm integral equation of the second kind. It is shown for this geometry that the crack propagation speed has influence on the dynamic energy release rate. The initial crack branching angle for a PZT-5H piezoceramic structure is predicted by the maximum energy release rate criterion. Received 23 January 2001; accepted for publication 18 October 2001  相似文献   

6.
We propose an algorithm that reduces the process of numerical solution to successive calculation of elementary one-dimensional problems of the type of a system of acoustic equations. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 199–206, January–February, 1999.  相似文献   

7.
Summary A piezoelectric material layer bonded to an elastic substrate is investigated. The piezoelectric layer contains an edge crack that is perpendicular to the surface of medium. The poling axis of the piezoelectric layer is parallel to its edge. The elastic layer can be an ideal insulator or an ideal conductor. The Fourier transform technique is used to reduce the problem to a solution of singular integral equations. Both impermeable crack and permeable crack assumptions are considered. Stress and electric displacement intensity factors are investigated for different dimensions of the medium. A double-edge cracked symmetric piezoelectric laminate under symmetric electro-mechanical load is also investigated. BLW would like to thank the National Science Foundation of China (#10102004) and the City University of Hong Kong for the support of this work (DAG #7100219). YGS also thanks the Multidiscipline Scientific Research Foundation Project (HIT. MD 2001. 39) of the Harbin Institute of Technology and the SRF for ROCS, SEM.  相似文献   

8.
《Comptes Rendus Mecanique》2017,345(3):184-191
In [1], we studied the response of a thin homogeneous piezoelectric patch perfectly bonded to an elastic body. Here we extend this study to the case of a very thin heterogeneous patch made of a periodic distribution of piezoelectric inclusions embedded in a linearly elastic matrix and perfectly bonded to an elastic body. Through a rigorous mathematical analysis, we show that various asymptotic models arise, depending on the electromechanical loading together with the relative behavior between the thickness of the patch and the size of the piezoelectric inclusions.  相似文献   

9.
10.
The distribution of the energy of a piezoelectric actuator between normal modes (Lamb waves) as a function of the source parameters and frequency is studied by solving the dynamic contact problem of the interaction between a flexible piezoelectric patch and a flexible elastic substrate with explicit representations for the excited traveling waves. Zones of the maximum and minimum energy of the fundamental modes are determined in the “oscillation frequency–piezoelectric patch width” plane.  相似文献   

11.
The problem of the simple smooth curvilinear crack in an infinite anisotropic elastic medium under conditions of generalized plane stress or plane strain and under the supposition that the plane of the problem is a plane of elastic symmetry of the anisotropic medium is reduced to a complex Cauchy-type singular integral equation along the crack together with a condition of single-valuedness of displacements around the crack by using the complex potentials technique. Application to the case of a straight crack is also given.  相似文献   

12.
Summary  A piezoelectric layer bonded to the surface of an elastic structure is considered. The piezoelectric and the elastic layers are infinite along the x-axis and have finite thickness in the y-direction. The polarization direction of the piezoelectric material is along the y-axis. By means of the method of singular integral equations, the solution in a Laplace transform plane is demonstrated. Laplace inversion yields the results in the time domain. Numerical values of the crack tip fields under in-plane transient electromechanical loading are obtained. The influence of layers thickness on stress and electric displacement intensity factors is investigated. Received 16 March 2000; accepted for publication 16 August 2000  相似文献   

13.
14.
A method of constructing the interior Eshelby tensor for a weakly anisotropic elastic medium is proposed.  相似文献   

15.
16.
We determine the electrostressed state of a piezoceramic medium with an arbitrarily oriented triaxial ellipsoidal inclusion under homogeneous mechanical and electric loads. Use is made of Eshelby’s equivalent inclusion method generalized to the case of a piezoelectric medium. Solving the problem for a spheroidal cavity with the axis of revolution aligned with the polarization axis demonstrates the high efficiency of the approach. A numerical analysis is carried out. The stress distribution along the surface of the arbitrarily oriented triaxial ellipsoidal inclusion is studied  相似文献   

17.
The problem of a layer bonded to an elastic half-space, where the layer is driven by torsional oscillations of a bonded rigid circular disk, is solved by means of integral transform techniques. Using a standard technique, the problem is reduced to a Fredholm integral equation of the second kind, the kernel of which involves the calculation of principal value integrals. Dynamic stiffnesses are developed for a range of layer thicknesses, material properties, and frequencies.  相似文献   

18.
19.
The static solution to the problem of a layer bonded to an elastic half-space, where the layer is driven by the torsional rotation of a bonded rigid circular disk, is considered here. An iterative solution, perturbing on that given for the elastic half-space, is obtained as a convergent power series, provided the ratio of the stratum depth to the radius of the disk is large. An equation for the applied static torque at the surface of the rigid disk is also calculated and compared, under limiting cases, with known results.  相似文献   

20.
This two-part contribution presents a novel and efficient method to analyze the two-dimensional (2-D) electromechanical fields of a piezoelectric layer bonded to an elastic substrate, which takes into account the fully coupled electromechanical behavior. In Part I, Hellinger–Reissner variational principle for elasticity is extended to electromechanical problems of the bimaterial, and is utilized to obtain the governing equations for the problems concerned. The 2-D electromechanical field quantities in the piezoelectric layer are expanded in the thickness-coordinate with seven one-dimensional (1-D) unknown functions. Such an expansion satisfies exactly the mechanical equilibrium equations, Gauss law, the constitutive equations, two of the three displacement–strain relations as well as one of the two electric field-electric potential relations. For the substrate the fundamental solutions of a half-plane subjected to a vertical or horizontal concentrated force on the surface are used. Two differential equations and two singular integro-differential equations of four unknown functions, the axial force, N, the moment, M, the average and the first moment of electric displacement, D0 and D1, as well as the associated boundary conditions have been derived rigorously from the stationary conditions of Hellinger–Reissner variational functional. In contrast to the thin film/substrate theory that ignores the interfacial normal stress the present one can predict both the interfacial shear and normal stresses, the latter one is believed to control the delamination initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号