首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper extends the Gurson and GLD models [Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth, Part I—yield criteria and flow rules for porous ductile media. J. Mech. Phys. Solids 99, 2–15; Gologanu, M., Leblond, J.B., Devaux, J., 1993. Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41, 1723–1754; Gologanu, M., Leblond, J.B., Devaux, J., 1994. Approximate models for ductile metals containing non-spherical voids—case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Technol. 116, 290–297] to involve the coupled effects of void size and void shape on the macroscopic yield behavior of non-linear porous materials and on the void growth. A spheroidal representative volume element (RVE) under a remote axisymmetric homogenous strain boundary condition is carefully analyzed. A wide range of void aspect ratios covering the oblate spheroidal, spherical and prolate spheroidal void are taken into account to reflect the shape effect. The size effect is captured by the Fleck–Hutchinson phenomenological strain gradient plasticity theory [Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. In: Hutchinson, J.W., Wu, T.Y. (Eds.), Advance in Applied Mechanics, vol. 33, Academic Press, New York, pp. 295–361]. A new size-dependent damage model like the Gurson and GLD models is developed based on the traditional minimum plasticity potential principle. Consequently, the coupled effects of void size and void shape on yield behavior of porous materials and void growth are discussed in detail. The results indicate that the void shape effect on the yield behavior of porous materials and on the void growth can be modified dramatically by the void size effect and vice versa. The applied stress triaxiality plays an important role in these coupled effects. Moreover, there exists a cut-off void radius rc, which depends only on the intrinsic length l1 associated with the stretch strain gradient. Voids of effective radius smaller than the critical radius rc are less susceptible to grow. These findings are helpful to our further understanding to some impenetrable micrographs of the ductile fracture surfaces.  相似文献   

2.
A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter version and the multiparameter theory, and significant differences between the predictions of the two models are reported. It is shown that modeling fiber elasticity is important when using the present theories. A significant stiffening effect when compared to conventional models is predicted, which is a result of a significant decrease in the level of plastic strain. Moreover, it is shown that the relative stiffening effect increases with fiber volume fraction. The higher-order nature of the theories allows for different higher-order boundary conditions at the fiber-matrix interface, and these boundary conditions are found to be of importance. Furthermore, the influence of the material length parameters on the stresses along the interface between the fiber and the matrix material is discussed, as well as the stresses within the elastic fiber which are of importance for fiber breakage.  相似文献   

3.
The size dependent strengthening resulting from the transformation strain in Transformation Induced Plasticity (TRIP) steels is investigated using a two-dimensional embedded cell model of a simplified microstructure composed of small cylindrical metastable austenitic inclusions within a ferritic matrix. Earlier studies have shown that within the framework of classical plasticity or of the single length parameter Fleck–Hutchinson strain gradient plasticity theory, the transformation strain has no significant impact on the overall strengthening. The strengthening is essentially coming from the composite effect with a marked inclusion size effect resulting from the appearance during deformation of new boundaries constraining the plastic flow. The three parameters version of the Fleck–Hutchinson strain gradient plasticity theory is used here in order to better capture the effect of the plastic strain gradients resulting from the transformation strain. The three parameters theory incorporates separately the rotational and extensional gradients in the formulation, which leads to a significant influence of the shear component of the transformation strain, not captured by the single-parameter theory. When the size of the austenitic inclusions decreases, the overall strengthening increases due to a combined size dependent effect of the transformation strain and of the evolving composite structure. A parametric study is proposed and discussed in the light of experimental evidences giving indications on the optimization of the microstructure of TRIP-assisted multi-phase steels.  相似文献   

4.
Separation of the particle–matrix interface and breakage of the second-phase particle are two main void nucleation mechanisms, which are directly associated with the stress concentration factors (SCFs) at the interface and within the particle, respectively. This work investigates the coupled effects of particle size and particle shape on these stress concentrations by solving an infinite solid containing an oblate spheroidal particle under remote stress boundary condition. The phenomenological strain plasticity theory by Fleck–Hutchinson [Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. In: Hutchinson, J.W., Wu, T.Y. (Eds.), Advance in Applied Mechanics, vol. 33. Academic Press, New York, pp. 295–361] is adopted to capture the size effect, various particle aspect ratios are considered to depict the particle shape effect and an interfacial energy concept is introduced to settle the double-traction equilibrium problem at the matrix–particle interface. By using a Ritz procedure, solutions about the stress concentrations are numerically achieved and three main results are found. First, the interfacial normal stress near the particle pole, the interfacial shear stress and the particle opening stress are dramatically elevated and their distributions are significantly modified by decrease in the particle size. Second, this particle size effect is influenced by the remote effective strain, remote stress triaxiality and the interfacial energy to different extent. Finally, the particle shape effect is coupled with this particle size effect, and the more oblate the particle is, the more significant the size effect on SCF elevation is. These findings are helpful for us to understand deeply the void nucleation mechanism at the micron scale.  相似文献   

5.
Large deformation gradients occur near a crack-tip and strain gradient dependent crack-tip deformation and stress fields are expected. Nevertheless, for material length scales much smaller than the scale of the deformation gradients, a conventional elastic–plastic solution is obtained. On the other hand, for significant large material length scales, a conventional elastic solution is obtained. This transition in behaviour is investigated based on a finite strain version of the Fleck–Hutchinson strain gradient plasticity model from 2001. The predictions show that for a wide range of material parameters, the transition from the conventional elastic–plastic to the elastic solution occurs for length scales ranging from 0.001 times the size of the plastic zone to a length scale of the same order of magnitude as the plastic zone.  相似文献   

6.
The size effect in conical indentation of an elasto-plastic solid is predicted via the Fleck and Willis formulation of strain gradient plasticity (Fleck, N.A. and Willis, J.R., 2009, A mathematical basis for strain gradient plasticity theory. Part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045–1057). The rate-dependent formulation is implemented numerically and the full-field indentation problem is analyzed via finite element calculations, for both ideally plastic behavior and dissipative hardening. The isotropic strain-gradient theory involves three material length scales, and the relative significance of these length scales upon the degree of size effect is assessed. Indentation maps are generated to summarize the sensitivity of indentation hardness to indent size, indenter geometry and material properties (such as yield strain and strain hardening index). The finite element model is also used to evaluate the pertinence of the Johnson cavity expansion model and of the Nix–Gao model, which have been extensively used to predict size effects in indentation hardness.  相似文献   

7.
SIZE EFFECT AND GEOMETRICAL EFFECT OF SOLIDS IN MICRO—INDENTATION TEST   总被引:2,自引:2,他引:2  
Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size,which is frequently referred to as the size effect.At the same time,at micron or sub-micron scale,another effect,which is referred to as the geometrical size effects such as crystal grain size effect,thin flim thickness effect,etc.,also influences the measured material hardness.However,the trends are at odds with the size-independence implied by the conventional elastic-plastic theory.In the present research,the strain gradient plasticity theory(Fleck and Hutchinson)is used to model the composition effects(size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting.The phenomena of the “pile-up“ and “sink-in“ apeared in the indentation test for the polycrystal materials are also discussed.Meanwhile,the micro-indentation experiments for the polycrystal Al and for the Ti/Si3N4 thin film/substrate system are carried out.By comparing the theoretical predictions with experimental measuremtns.the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.  相似文献   

8.
A finite strain generalization of the strain gradient plasticity theory by Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001a) 2245) is proposed and used to study size effects in plane strain necking of thin sheets using the finite element method. Both sheets with rigid grips at the ends and specimens with shear free ends are analyzed. The strain gradient plasticity theory predicts delayed onset of localization when compared to conventional theory, and it depresses deformation localization in the neck. The sensitivity to imperfections is analyzed as well as differently hardening materials.  相似文献   

9.
It has not been a simple matter to obtain a sound extension of the classical J2 flow theory of plasticity that in- corporates a dependence on plastic strain gradients and that is capable of capturing size-dependent behaviour of metals at the micron scale. Two classes of basic extensions of clas- sical J2 theory have been proposed: one with increments in higher order stresses related to increments of strain gradi- ents and the other characterized by the higher order stresses themselves expressed in terms of increments of strain gra- dients. The theories proposed by Muhlhaus and Aifantis in 1991 and Fleck and Hutchinson in 2001 are in the first class, and, as formulated, these do not always satisfy ther- modynamic requirements on plastic dissipation. On the other hand, theories of the second class proposed by Gudmundson in 2004 and Gurtin and Anand in 2009 have the physical deficiency that the higher order stress quantities can change discontinuously for bodies subject to arbitrarily small load changes. The present paper lays out this background to the quest for a sound phenomenological extension of the rate- independent J2 flow theory of plasticity to include a de- pendence on gradients of plastic strain. A modification of the Fleck-Hutchinson formulation that ensures its thermo- dynamic integrity is presented and contrasted with a compa- rable formulation of the second class where in the higher or- der stresses are expressed in terms of the plastic strain rate. Both versions are constructed to reduce to the classical J2 flow theory of plasticity when the gradients can be neglected and to coincide with the simpler and more readily formulated J2 deformation theory of gradient plasticity for deformation histories characterized by proportional straining.  相似文献   

10.
A finite strain viscoplastic nonlocal plasticity model is formulated and implemented numerically within a finite element framework. The model is a viscoplastic generalisation of the finite strain generalisation by Niordson and Redanz (2004) [Journal of the Mechanics and Physics of Solids 52, 2431–2454] of the strain gradient plasticity theory proposed by Fleck and Hutchinson (2001) [Journal of the Mechanics and Physics of Solids 49, 2245–2271]. The formulation is based on a viscoplastic potential that enables the formulation of the model so that it reduces to the strain gradient plasticity theory in the absence of viscous effects. The numerical implementation uses increments of the effective plastic strain rate as degrees of freedom in addition to increments of displacement. To illustrate predictions of the model, results are presented for materials containing either voids or rigid inclusions. It is shown how the model predicts increased overall yield strength, as compared to conventional predictions, when voids or inclusions are in the micron range. Furthermore, it is illustrated how the higher order boundary conditions at the interface between inclusions and matrix material are important to the overall yield strength as well as the material hardening.  相似文献   

11.
There exist two frameworks of strain gradient plasticity theories to model size effects observed at the micron and sub-micron scales in experiments. The first framework involves the higher-order stress and therefore requires extra boundary conditions, such as the theory of mechanism-based strain gradient (MSG) plasticity [J Mech Phys Solids 47 (1999) 1239; J Mech Phys Solids 48 (2000) 99; J Mater Res 15 (2000) 1786] established from the Taylor dislocation model. The other framework does not involve the higher-order stress, and the strain gradient effect come into play via the incremental plastic moduli. A conventional theory of mechanism-based strain gradient plasticity is established in this paper. It is also based on the Taylor dislocation model, but it does not involve the higher-order stress and therefore falls into the second strain gradient plasticity framework that preserves the structure of conventional plasticity theories. The plastic strain gradient appears only in the constitutive model, and the equilibrium equations and boundary conditions are the same as the conventional continuum theories. It is shown that the difference between this theory and the higher-order MSG plasticity theory based on the same dislocation model is only significant within a thin boundary layer of the solid.  相似文献   

12.
Modeling strain gradient plasticity effects has achieved considerable success in recent years. However, incorporating the full mechanisms of the pressure-sensitive yielding and the size dependence of plastic deformation still remains an open challenge. In this work, a mechanism-based stain gradient (MSG) plasticity theory for pressure sensitive materials with a variable material length-scale parameter is presented. The flow theory of MSG plasticity based on the Drucker–Prager yield function is established following the same hierarchical framework of MSG plasticity proposed by Gao et al., 1999, Huang et al., 2000 and Qiu et al. (2003) in order to link the strain gradient plasticity theory on the mesoscale to the Taylor dislocation model on the micro-scale. The incremental constitutive relation based on the associated flow rule is derived for the Drucker–Prager yield function on the micro-scale, including the higher-order stress introduced as the thermodynamic conjugate of strain gradient at the mesoscale. The proposed theory successfully predicts the experimental results. The numerical results show that when the pressure-sensitivity index defined by the Drucker–Prager yield function takes different values, the material response curves are different and the material strength increases with the increase of pressure-sensitivity index. It proves that this procedure is able to represent the material behavior of pressure-sensitive materials such as geomaterials, polymeric materials, metallic foams and metallic glass.  相似文献   

13.
Metallic materials display strong size effect when the characteristic length associated with plastic deformation is on the order of microns. This size effect cannot be explained by classical plasticity theories since their constitutive relations do not have an intrinsic material length. Strain gradient plasticity has been developed to extend continuum plasticity to the micron or submicron regime. One major issue in strain gradient plasticity is the determination of the intrinsic material length that scales with strain gradients, and several microbend test specimens have been designed for this purpose. We have studied different microbend test specimens using the theory of strain gradient plasticity. The pure bending specimen, cantilever beam, and the microbend test specimen developed by Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale Acta Mater. 46, 5109–5115) are found suitable for the determination of intrinsic material length in strain gradient plasticity. However, the double cantilever beam (both ends clamped) is unsuitable since its deformation is dominated by axial stretching. The strain gradient effects significantly increase the bending stiffness of a microbend test specimen. The deflection of a 10-μm thick beam is only a few percent of that estimated by classical plasticity.  相似文献   

14.
Plastic flow localization in ductile materials subjected to pure shear loading and uniaxial tension is investigated respectively in this paper using a reduced strain gradient theory, which consists of the couple-stress (CS) strain gradient theory proposed by Fleck and Hutchinson (1993) and the strain gradient hardening (softening) law (C–W) proposed by Chen and Wang (2000). Unlike the classical plasticity framework, the initial thickness of the shear band and the strain rate distribution in both cases are predicted analytically using a bifurcation analysis. It shows that the strain rate is obviously non-uniform inside the shear band and reaches a maximum at the center of the shear band. The initial thickness of the shear band depends on not only the material intrinsic length lcs but also the material constants, such as the yield strength, ultimate tension strength, the linear hardening and softening shear moduli. Specially, in the uniaxial tension case, the most possible tilt angle of shear band localization is consistent qualitatively with the existing experimental observations. The results in this paper should be useful for engineers to predict the details of material failures due to plastic flow localization.  相似文献   

15.
In the small deformation range, we consider crystal and isotropic “higher-order” theories of strain gradient plasticity, in which two different types of size effects are accounted for: (i) that dissipative, entering the model through the definition of an effective measure of plastic deformation peculiar of the isotropic hardening function and (ii) that energetic, included by defining the defect energy (i.e., a function of Nye's dislocation density tensor added to the free energy; see, e.g., [Gurtin, M.E., 2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32]). In order to compare the two modellings, we recast both of them into a unified deformation theory framework and apply them to a simple boundary value problem for which we can exploit the Γ-convergence results of [Bardella, L., Giacomini, A., 2008. Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity. J. Mech. Phys. Solids 56 (9), 2906–2934], in which the crystal model is made isotropic by imposing that any direction be a possible slip system. We show that the isotropic modelling can satisfactorily approximate the behaviour described by the isotropic limit obtained from the crystal modelling if the former constitutively involves the plastic spin, as in the theory put forward in Section 12 of [Gurtin, M.E., 2004. A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 52, 2545–2568]. The analysis suggests a criterium for choosing the material parameter governing the plastic spin dependence into the relevant Gurtin model.  相似文献   

16.
基于Hellinger-Reissner变分原理的应变梯度杂交元设计   总被引:2,自引:0,他引:2  
李雷  吴长春  谢水生 《力学学报》2005,37(3):301-306
从一般的偶应力理论出发,基于Hellinger-Reissner变分原理,通过对有限元 离散体系的位移试解引入非协调位移函数,得到了偶应力理论下有限元离散系统的能量相容 条件,并由此建立了应变梯度杂交元的应力函数优化条件. 根据该优化条件,构造了一 个C0类的平面4节点梯度杂交元,数值结果表明,该单元对可压缩和不可压缩状态的 梯度材料均可给出合理的数值结果,再现材料的尺度效应.  相似文献   

17.
In the present paper, a boundary value problem about the macroscopic response and its microscopic mechanism of a representative spherical cell with a spherical microvoid under axisymmetric triaxial tension has been theoretically investigated. To capture the size effects of local plastic deformation in the matrix, the strain gradient constitutive theory including the rotation and the stretch gradients developed by Fleck and Hutchinson [Strain gradient plasticity, in: J.W. Hutchinson, T.Y. Wu (Eds.), Advance in Applied Mechanics, vol. 33, Academic Press, New York, 1997, p. 295] is adopted. By means of the principle of minimum plasticity potential and the Lagrange multipliers method, the self-contained displacement field within the matrix has been computationally determined. Based on these, a size-dependent constitutive potential theory for porous material has been developed. The results indicate clearly that the microvoid evolution predicted by the present constitutive model displays very significant dependences on the void size especially when the radius a of microvoids is comparable with the intrinsic characteristic length l of the matrix. And when the void radius a is much lager than l, the present model can retrogress automatically to the Gurson model improved by Wang and Qin [Acta Mech. Solid. Sin. 10 (1989) 127, in Chinese].  相似文献   

18.
“To what extent do plastic strain gradients affect the strengthening resulting from the transformation of small metastable inclusions into hard inclusions within a plastically deforming matrix?” is the central question addressed here. Though general in the approach, the focus is on the behavior of TRIP-assisted multiphase steels. A two-dimensional embedded cell model of a simplified microstructure composed of a single metastable austenitic inclusion surrounded by a soft ferritic matrix is considered. The cell is inserted in a large homogenized medium. The transformation of a fraction of the austenite into a hard martensite plate is simulated, accounting for a transformation strain, and leading to complex elastic and plastic accommodation. The size of a transforming plate in real multiphase steels is typically between 0.1 and 2 μm, a range of size in which plastic strain gradient effects are expected to play a major role. The single parameter version of the Fleck–Hutchinson strain gradient plasticity theory is used to describe the plasticity in the austenite, ferrite and martensite phases. The higher order boundary conditions imposed on the plastic flow have a large impact on the predicted strengthening. Using realistic values of the intrinsic length parameter setting the scale at which the gradients effects have an influence leads to a noticeable increase of the strengthening on top of the increase due to the transformation of a volume fraction of the retained austenite. The geometrical parameters such as the volume fraction of retained austenite and of the transforming zone also bring significant strengthening. Strain gradient effects also significantly affect the stress state inside the martensite plate during and after transformation with a potential impact on the damage resistance of these steels.  相似文献   

19.
Plastic deformation exhibits strong size dependence at the micron scale, as observed in micro-torsion, bending, and indentation experiments. Classical plasticity theories, which possess no internal material lengths, cannot explain this size dependence. Based on dislocation mechanics, strain gradient plasticity theories have been developed for micron-scale applications. These theories, however, have been limited to infinitesimal deformation, even though the micro-scale experiments involve rather large strains and rotations. In this paper, we propose a finite deformation theory of strain gradient plasticity. The kinematics relations (including strain gradients), equilibrium equations, and constitutive laws are expressed in the reference configuration. The finite deformation strain gradient theory is used to model micro-indentation with results agreeing very well with the experimental data. We show that the finite deformation effect is not very significant for modeling micro-indentation experiments.  相似文献   

20.
Failure in micro-reinforced composites is investigated numerically using the strain-gradient plasticity theory of Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52 (6) 1379–1406] in a plane strain visco-plastic formulation. Bi-axially loaded unit cells are used and failure is modeled using a cohesive zone at the reinforcement interface. During debonding a sudden stress drop in the overall average stress–strain response is observed. Adaptive higher-order boundary conditions are imposed at the reinforcement interface for realistically modeling the restrictions on moving dislocations as debonding occurs. It is found that the influence of the imposed higher-order boundary conditions at the interface is minor. If strain-gradient effects are accounted for a void with a smooth shape develops at the reinforcement interface while a smaller void having a sharp tip nucleates if strain-gradient effects are excluded. Using orthogonalization of the plastic strain gradient with three corresponding material length scales it is found that, the first length scale dominates the evaluated overall average stress–strain response, the second one only has a small effect and the third one has an intermediate effect. Finally, studies of reinforcement having elliptical cross-sections show rather significant gradients of stress which is not seen for the corresponding circular cross-sections. Also, an increased drop in the overall load carrying capacity is observed for cross-sections elongated perpendicular to the principal tensile direction compared to the corresponding circular cross-sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号