首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The moment Lyapunov exponents of a two-dimensional system under bounded noise parametric excitation are studied in this paper. The method of regular perturbation is applied to obtain weak noise expansions of the moment Lyapunov exponent, Lyapunov exponent, and stability index in terms of the small fluctuation parameter.  相似文献   

2.
Flow-induced vibration of a single cylinder in a cross-flow is mainly due to vortex shedding, which is usually considered as a forced vibration problem. It is shown that flow-induced vibration of a cylinder in the lock-in region is a combination of forced resonant vibration and fluid-damping-induced instability, which leads to time-dependent-fluid-damping-induced parametric resonance and constant-negative-damping-induced instability. The time-dependent fluid damping can be modeled as a bounded noise. The dynamic stability of a two-dimensional system under bounded noise excitation with a narrow-band characteristic is studied through the determination of the moment Lyapunov exponent and the Lyapunov exponent. The case when the system is in primary parametric resonance in the absence of noise is considered and the effect of noise on the parametric resonance is investigated. For small amplitudes of the bounded noise, analytical expansions of the moment Lyapunov exponents and Lyapunov exponents are obtained, which are shown to be in excellent agreement with those obtained using Monte Carlo simulation. The theory of stochastic stability is applied to explore the stability of a cylinder in a cross-flow. The analytical and numerical results show that the time-dependent-fluid-damping-induced parametric resonance could occur, which suggests that parametric resonance also contributes to the vibration of the cylinder in the lock-in range.  相似文献   

3.
The stability of a viscoelastic column under the excitation of stochastic axial compressive load is investigated in this paper. The material of the column is modeled using a fractional Kelvin–Voigt constitutive relation, which leads to that the equation of motion is governed by a stochastic fractional equation with parametric excitation. The excitation is modeled as a bounded noise, which is a realistic model of stochastic fluctuation in engineering applications. The method of stochastic averaging is used to approximate the responses of the original dynamical system by a new set of averaged variables which are diffusive Markov vector. An eigenvalue problem is formulated from the averaged equations, from which the moment Lyapunov exponent is determined for the column system with small damping and weak excitation. The effects of various parameters on the stochastic stability and significant parametric resonance are discussed and confirmed by simulation results.  相似文献   

4.
We present a systematic study of moment evolution in multidimensional stochastic difference systems, focusing on characterizing systems whose low-order moments diverge in the neighborhood of a stable fixed point. We consider systems with a simple, dominant eigenvalue and stationary, white noise. When the noise is small, we obtain general expressions for the approximate asymptotic distribution and moment Lyapunov exponents. In the case of larger noise, the second moment is calculated using a different approach, which gives an exact result for some types of noise. We analyze the dependence of the moments on the systems dimension, relevant system properties, the form of the noise, and the magnitude of the noise. We determine a critical value for noise strength, as a function of the unperturbed systems convergence rate, above which the second moment diverges and large fluctuations are likely. Analytical results are validated by numerical simulations. Finally, we present a short discussion of the extension of our results to the continuous time limit.  相似文献   

5.
《Physics letters. A》2006,357(3):204-208
Identification of typical noise-contaminated sample response is a hard task in a nonlinear system under stochastic background since irregularity of the sample response may come from measure noise, dynamical noise, or nonlinear effect, etc., and conventional dynamical methods are generally not useful. Here, the pseudo-periodic surrogate algorithm by Small is employed to test the sample time series in the softening Duffing oscillator under the Gaussian white noise excitation. The correlation dimensions of the noisy periodic and the noise-induced chaotic time series of the system are compared with those of their corresponding surrogate data respectively, the leading Lyapunov exponents by Rosenstein's algorithm are also presented for comparison.  相似文献   

6.
冯俊  徐伟  顾仁财  狄根虎 《物理学报》2011,60(9):90507-090507
研究了有界噪声与谐和激励作用下的Duffing-Rayleigh振子的动力学行为.首先运用随机Melnikov过程方法得到系统出现混沌的条件,结果表明随着非线性阻尼参数的增加系统会从混沌运动到周期运动,随着Wiener过程强度参数的增加,系统由混沌进入周期的临界幅值会先递增后不变.最后,用两类数值方法即最大Lyapunov指数与Poincare截面验证了上述结果. 关键词: 有界噪声 随机Melnikov过程 混沌运动 周期运动  相似文献   

7.
Stability of vertical upright position of an inverted pendulum with its suspension point subjected to high frequency harmonics and stochastic excitations is investigated. Two classes of excitations, i.e., combined high frequency harmonic excitation and Gaussian white noise excitation, and high frequency bounded noise excitation, respectively, are considered. Firstly, the terms of high frequency harmonic excitations in the equation of motion of the system can be set equivalent to nonlinear stiffness terms by using the method of direct separation of motions. Then the stochastic averaging method of energy envelope is used to derive the averaged Ito stochastic differential equation for system energy. Finally, the stability with probability 1 of the system is studied by using the largest Lyapunov exponent obtained from the averaged Ito stochastic differential equation. The effects of system parameters on the stability of the system are discussed, and some examples are given to illustrate the efficiency of the proposed procedure.  相似文献   

8.
Stochastic stability of a fractional viscoelastic column axially loaded by a wideband random force is investigated by using the method of higher-order stochastic averaging. By modelling the wideband random excitation as Gaussian white noise and real noise and assuming the viscoelastic material to follow the fractional Kelvin–Voigt constitutive relation, the motion of the column is governed by a fractional stochastic differential equation, which is justifiably and uniformly approximated by an averaged system of Itô stochastic differential equations. Analytical expressions are obtained for the moment Lyapunov exponent and the Lyapunov exponent of the fractional system with small damping and weak random fluctuation. The effects of various parameters on the stochastic stability of the system are discussed.  相似文献   

9.
There have been many contributions concerned with non-smooth dynamics. The purpose of this study is focused on the global stochastic dynamics of a kind of vibro-impact oscillator under the multiple harmonic and bounded noisy excitations. The well-known cell-to-cell mapping method is firstly developed to investigate the incursive fractal boundaries between the attracting domains of different random attractors, and a specific Poincaré map is then set up to explore the noise-contaminated dynamical transitions in the system. Lastly, the leading Lyapunov exponents and the surrogate tests are used to identify the noise-contaminated dynamics. It is shown that several random attractors will coexist in the phase space of the randomly driven system by adjusting the parameters’ values, and fractal boundaries may also arise between the attracting domains of different random attractors. Under the joint action of the harmonic excitation and the weak bounded noise excitation, the noisy period-doubling process, similar to a deterministic one, can appear in the Poincaré’s global cross-section by increasing the strength of the bounded noisy excitation. Moreover, the noisy periodic, the noisy chaotic, and the random-dominant dynamics are also distinguished from the noise-contaminated signals.  相似文献   

10.
The influence of a soliton system under an external harmonic excitation is considered. We take the compound KdV-Burgers equation as an example, and investigate numerically the chaotic behavior of the system with a periodic forcing. Different routes to chaos such as period doubling, quasi-periodic routes, and the shapes of strange attractors are observed by using bifurcation diagrams, the largest Lyapunov exponents, phase projections and Poincaré maps.  相似文献   

11.
On the basis of numerical analysis, the dynamics of the magnetic moment of a ring system of ball-shaped bodies is studied under its excitation by a harmonic magnetic field and an additional noise signal. A stochastic effect is discovered, in which the system passes, under the action of noise, to unstable (in the absence of an additional excitation) oscillatory mode of the total magnetic moment with a frequency differing from the harmonic field frequency. The possibility of controlling the noise signal intensity, which is necessary for the realization of this effect, is demonstrated.  相似文献   

12.
In the present study, the geometrically nonlinear vibrations of circular cylindrical shells, subjected to internal fluid flow and to a radial harmonic excitation in the spectral neighbourhood of one of the lowest frequency modes, are investigated for different flow velocities. The shell is modelled by Donnell's nonlinear shell theory, retaining in-plane inertia and geometric imperfections; the fluid is modelled as a potential flow with the addition of unsteady viscous terms obtained by using the time-averaged Navier-Stokes equations. A harmonic concentrated force is applied at mid-length of the shell, acting in the radial direction. The shell is considered to be immersed in an external confined quiescent liquid and to contain a fluid flow, in order to reproduce conditions in previous water-tunnel experiments. For the same reason, complex boundary conditions are applied at the shell ends simulating conditions intermediate between clamped and simply supported ends. Numerical results obtained by using pseudo-arclength continuation methods and bifurcation analysis show the nonlinear response at different flow velocities for (i) a fixed excitation amplitude and variable excitation frequency, and (ii) fixed excitation frequency by varying the excitation amplitude. Bifurcation diagrams of Poincaré maps obtained from direct time integration are presented, as well as the maximum Lyapunov exponent, in order to classify the system dynamics. In particular, periodic, quasi-periodic, sub-harmonic and chaotic responses have been detected. The full spectrum of the Lyapunov exponents and the Lyapunov dimension have been calculated for the chaotic response; they reveal the occurrence of large-dimension hyperchaos.  相似文献   

13.
Lyapunov exponents are a set of fundamental dynamical invariants characterizing a system's sensitive dependence on initial conditions. For more than a decade, it has been claimed that the exponents computed from electroencephalogram (EEG) or electrocorticogram (ECoG) signals can be used for prediction of epileptic seizures minutes or even tens of minutes in advance. The purpose of this paper is to examine the predictive power of Lyapunov exponents. Three approaches are employed. (1) We present qualitative arguments suggesting that the Lyapunov exponents generally are not useful for seizure prediction. (2) We construct a two-dimensional, nonstationary chaotic map with a parameter slowly varying in a range containing a crisis, and test whether this critical event can be predicted by monitoring the evolution of finite-time Lyapunov exponents. This can thus be regarded as a "control test" for the claimed predictive power of the exponents for seizure. We find that two major obstacles arise in this application: statistical fluctuations of the Lyapunov exponents due to finite time computation and noise from the time series. We show that increasing the amount of data in a moving window will not improve the exponents' detective power for characteristic system changes, and that the presence of small noise can ruin completely the predictive power of the exponents. (3) We report negative results obtained from ECoG signals recorded from patients with epilepsy. All these indicate firmly that, the use of Lyapunov exponents for seizure prediction is practically impossible as the brain dynamical system generating the ECoG signals is more complicated than low-dimensional chaotic systems, and is noisy.  相似文献   

14.
李群宏  谭洁燕 《中国物理 B》2011,20(4):40505-040505
A two-degree-of-freedom vibro-impact system having symmetrical rigid stops and subjected to periodic excitation is investigated in this paper. By introducing local maps between different stages of motion in the whole impact process, the Poincar'e map of the system is constructed. Using the Poincar'e map and the Gram-Schmidt orthonormalization, a method of calculating the spectrum of Lyapunov exponents of the above vibro-impact system is presented. Then the phase portraits of periodic and chaotic attractors for the system and the corresponding convergence diagrams of the spectrum of Lyapunov exponents are given out through the numerical simulations. To further identify the validity of the aforementioned computation method, the bifurcation diagram of the system with respect to the bifurcation parameter and the corresponding largest Lyapunov exponents are shown.  相似文献   

15.
Nonautonomous behavior of oscillators in the presence of noise is considered. The influence of noise on the dynamics of local zero Lyapunov exponents for nonautonomous dynamic systems that are near the synchronization boundary is considered. It is shown that the action of noise on a nonautonomous dynamic system that is near the synchronization boundary produces domains of synchronous motion in the series realization, which alternate with asynchronous domains. In accordance with this, the distribution of local zero Lyapunov exponents corresponding to laminar phases shift toward negative values. This effect is demonstrated with a discrete-time system (map of a circle onto itself) that is a reference model to describe the synchronization phenomenon and also with a reference system exhibiting chaotic dynamics (Ressler system).  相似文献   

16.
The chaotic behavior of Van der Pol–Mathieu–Duffing oscillator under bounded noise is investigated. By using random Melnikov technique, a mean square criterion is used to detect the necessary conditions for chaotic motion of this stochastic system. The results show that the threshold of bounded noise amplitude for the onset of chaos in this system increases as the intensity of the noise in frequency increases, which is further verified by the maximal Lyapunov exponents of the system. The effect of bounded noise on Poincaré map is also investigated, in addition the numerical simulation of the maximal Lyapunov exponents.  相似文献   

17.
幂函数型单势阱随机振动系统的广义随机共振   总被引:2,自引:0,他引:2       下载免费PDF全文
季袁冬  张路  罗懋康 《物理学报》2014,63(16):164302-164302
将线性随机振动系统中通常的简谐势阱推广为更一般的幂函数型势阱,得到幂函数型单势阱非线性随机振动系统.利用随机情形下的二阶Runge-Kutta算法研究了噪声强度、势阱参数和周期激励参数对系统稳态响应的一阶矩振幅和系统响应的稳态方差的影响.对决定势阱形状的势阱参数之一b历经b2,b2以及相当于简谐势阱的b=2等全部情况的研究表明:随噪声强度D的变化,系统稳态响应的一阶矩振幅可以在b2时出现非单调变化,即发生广义随机共振现象,而对通常的b=2简谐势阱以及b2的情况,则无该现象发生;随势阱参数的变化,系统稳态响应的一阶矩振幅以及系统响应的稳态方差也可以发生非单调变化.  相似文献   

18.
A stochastic averaging procedure for a single-degree-of-freedom (SDOF) strongly nonlinear system with light damping modeled by a fractional derivative under Gaussian white noise excitations is developed by using the so-called generalized harmonic functions. The approximate stationary probability density and the largest Lyapunov exponent of the system are obtained from the averaged Itô stochastic differential equation of the system. It is shown that the approximate stationary solutions obtained by using the stochastic averaging procedure agree well with those from the numerical simulation of original systems. The effects of system parameters on the approxiamte stationary probability density and the largest Lyapunov exponent of the system are also discussed.  相似文献   

19.
杨晓丽  徐伟  孙中奎 《物理学报》2006,55(4):1678-1686
研究了具有同宿轨道、异宿轨道的双势阱Duffing振子在谐和激励与有界噪声摄动下的混沌运动.基于同宿分叉和异宿分叉,由Melnikov理论推导了系统出现混沌运动的必要条件及出现分形边界的充分条件.结果表明:当Wiener过程的强度参数大于某一临界值时,噪声增大了诱发混沌运动的有界噪声的临界幅值,相应地缩小了参数空间的混沌域,且产生混沌运动的临界幅值随着噪声强度的增大而增大.同时数值计算了最大Lyapunov指数,由最大Lyapunov指数为零从另一角度得到了系统出现混沌运动的有界噪声的临界幅值,发现在Wi 关键词: 混沌 同宿和异宿分叉 随机Melnikov方法 最大Lyapunov指数  相似文献   

20.
It has been claimed that Lyapunov exponents computed from electroencephalogram or electrocorticogram (ECoG) time series are useful for early prediction of epileptic seizures. We show, by utilizing a paradigmatic chaotic system, that there are two major obstacles that can fundamentally hinder the predictive power of Lyapunov exponents computed from time series: finite-time statistical fluctuations and noise. A case study with an ECoG signal recorded from a patient with epilepsy is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号