首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tm3+-doped and Tm3+/Yb3+-codoped TeO2–ZnO–Bi2O3 (TZB) glasses are prepared by melt-quenching method. The Judd-Ofelt intensity parameters (Ωt t = 2, 4, 6), radiative transition rate, and radiative lifetime of Tm3+ are calculated based on the absorption spectra. The 1.8 μm emission of the samples is investigated under 980 nm laser excitation. The absorption, emission cross-sections, and gain coefficient of Tm3+:3F4  3H6 are calculated. The energy transfer processes of Yb3+–Yb3+ and Yb3+–Tm3+ are analyzed, the results show that the Yb3+ ions can transfer their energy to Tm3+ ions with large energy transfer coefficient, and a maximum efficiency of 79%.  相似文献   

2.
《Journal of Non》2006,352(36-37):3914-3922
The effect of host glass composition on the optical absorption and fluorescence spectra of Sm3+ and Dy3+ has been studied in mixed alkali borate glasses of the type 67B2O3 · xLi2O · (32  x)Cs2O (x = 8, 12, 16, 20 and 24). The Judd–Ofelt intensity parameters (Ω2, Ω4 and Ω6) are calculated. The radiative transition probabilities (A), radiative lifetimes (τR), branching ratios (β) and integrated absorption cross-sections (Σ) are computed for certain excited states of Sm3+ and Dy3+ ions for different x values in the glass matrix. Stimulated emission cross-sections (σp) are obtained for certain emission transitions of two ions in these mixed alkali borate glasses. These parameters are compared for different x values in the glass matrix. Variation of these parameters with x in the glass matrix has been studied.  相似文献   

3.
《Journal of Non》2006,352(32-35):3636-3641
Sodium phosphoniobate glasses with the composition (mol%) 75NaPO3–25Nb2O5 and containing 2 mol% Yb3+ and x mol% Er3+ (0.01  x  2) were prepared using the conventional melting/casting process. Er3+ emission at 1.5 μm and infrared-to-visible upconversion emission, upon excitation at 976 nm, are evaluated as a function of the Er3+ concentration. For the lowest Er3+ content, 1.5 μm emission quantum efficiency was 90%. Increasing the Er3+ concentration up to 2 mol%, the emission quantum efficiency was observed to decrease to 37% due to concentration quenching. The green and red upconversion emission intensity ratio was studied as a function of Yb3+ co-doping and the Er3+–Er3+ energy transfer processes.  相似文献   

4.
Raman scattering spectra of Ga2S3–2MCl (M = K, Rb, Cs) glasses have been conducted at room temperature. Based on the analysis of the local co-ordination surroundings of Cs+ ions, the similarities and differences of Raman spectra for the glass Ga2S3–2CsCl and the bridged molecular GaCl3 were explained successfully. Through considering the effect of M+ ions on mixed anion units [GaS4?xClx] and bridged units [Ga2S6?xClx] and the corresponding microstructural model, the Raman spectral evolution of the Ga2S3–2MCl (M = K, Rb, Cs) glasses was reasonably elucidated.  相似文献   

5.
Glasses with composition 50GeO2–(50?x)PbO–5PbF2xLnF3 (Ln = Pr3+–Yb3+) were prepared from commercial raw materials. The content of PbF2 was constant and amounted to 5 mol% whereas the concentration of luminescent ions was diverse (0.2 and 2 mol%). Thermal stability of the glasses were monitored by differential thermal analysis (DTA). It has been found that increase of rare-earth fluoride content from 0.2 mol% to 2 mol% brings about a shift of the glass crystallization onset from 450 °C to 487 °C for Nd-doped samples and from 466 °C to 482 °C for Tm-doped samples. Optical absorption and emission spectra of Ln active ions in oxyfluoride glass have been investigated at room temperature in the ultraviolet (UV), visible (VIS) and near-infrared (NIR) region. Oscillator strengths, phenomenological Judd–Ofelt intensity parameters Ω2,4,6, radiative transition probabilities, branching ratios and radiative lifetimes of luminescent levels have been estimated. Analysis of decay curves of luminescence revealed that the increase of rare-earth fluoride content from 0.2 mol% to 2 mol% shortens the lifetime of the 4F3/2 level of Nd3+ from 224 μs to 90 μs.  相似文献   

6.
Energy-transfer excited upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped PbGeO3–PbF2–CdF2 glass and glass–ceramic under infrared excitation is investigated. In Ho3+/Yb3+-codoped samples, green (545 nm), red (652 nm), and near-infrared (754 nm) upconversion emission corresponding to the 5S2(5F4)  5I8, 5F5  5I8, and 5S2(5F4)  5I7 transitions, respectively, was observed. Blue (490 nm) emission assigned to the 5F2,3  5I8 transition was also detected. In the Tb3+/Yb3+-codoped system, bright UV–visible emission around 384, 415, 438, 473–490, 545, 587, and 623 nm, identified as due to the 5D3(5G6)  7FJ(J = 6, 5, 4) and 5D4  7FJ(J = 6, 5, 4, 3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicated that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed.  相似文献   

7.
《Journal of Non》2007,353(24-25):2363-2366
Glasses of the xGd2O3 · (100  x)[B2O3 · Bi2O3] system with 0.5  x  10 mol% were studied by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. Data obtained show that for low gadolinium oxide contents of the samples (x  3 mol%) the Gd3+ ions are randomly distributed in the host glass matrix and are present as isolated and dipole–dipole coupled species. For higher gadolinium oxide contents of the samples (x > 3 mol%) the Gd3+ ions appear as both isolated and antiferromagnetically coupled species. The EPR spectra of the glasses reveal resonance sites with an unexpected high crystalline field in addition to the ‘U’ spectrum, typical for Gd3+ ions in disordered systems. This absorption line is due to Gd3+ ions that replace Bi3+ ions from the host glass matrix and could play the network unconventional former role in the studied glasses.  相似文献   

8.
《Journal of Non》2007,353(18-21):1748-1754
Efficient infrared-to-visible conversion is reported in thin film nano-composites, with composition 90% SiO2–10% TiO2, fabricated by a spin-coating sol–gel route and co-doped with Er3+ Yb3+ and with Nd3+:Yb3+ ions. The conversion process is observed under 808 nm laser diode excitation and results in the generation of green (526 and 550 nm) and red (650 nm) emissions: from the former, and blue (478 nm) and green (513 and 580 nm) emissions from the latter. The main mechanism that allows for up-conversion is ascribed to energy transfer among Er3+ and Yb3+ ions in their excited states. Up-conversion efficiency for red emission predominates in samples doped with Er3+:Yb3. The results illustrate the large potential of this class of materials for photonic applications in optoelectronics devices.  相似文献   

9.
《Journal of Non》2007,353(5-7):486-489
The optical properties of Yb-doped sol–gel silica glasses were studied by optical absorption and radio-luminescence (RL) measurements, that revealed the typical absorption and emission pattern of Yb3+ ions. Moreover, RL bands in the 1.5–3.5 eV interval were also observed, and related to defects of the silica matrix. The RL intensity temperature dependence, investigated in the 10–320 K interval, evidenced the presence of the SiO2 self-trapped exciton emission at 2.2 eV, whose intensity was rapidly quenched by temperature increasing. At variance, the Yb3+ emission intensity increased markedly by temperature increasing. This phenomenon is interpreted by considering a competitive role of point defects in free carrier trapping, evidenced by parallel wavelength resolved thermally stimulated luminescence measurements.  相似文献   

10.
Copper ions incorporated into alkaline earth zinc borate glasses 10RO + 30ZnO + 60B2O3 (R = Mg, Ca and Sr) and 10SrO + (30 ? x)ZnO + 60B2O3 + xCuO (x = 0, 0.1, 0.3, 0.5, and 0.7 wt.%) were characterized by electron paramagnetic resonance (EPR), optical absorption and FTIR techniques. The EPR spectra of all the glass samples exhibit resonance signals characteristic of Cu2+ ions. The values of spin-Hamiltonian parameters indicate that the Cu2+ ions in alkaline earth zinc borate glasses were present in octahedral sites with tetragonal distortion. The spin concentration (N) participating in resonance was calculated as a function of temperature for strontium zinc borate (SrZB) glass sample containing 0.7 wt.% of Cu2+ ions and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility (χ) was calculated at different temperatures and the Curie constant was evaluated from the 1/χ-T graph. The optical absorption spectra of these samples show only one absorption band. The optical band gap energies (Eg) and Urbach energy (ΔE) are calculated from their ultraviolet edges. The FTIR studies show different stretching and bending vibrations of alkaline earth zinc borate glasses.  相似文献   

11.
A glass of composition (20 ? x)Li2O–xLiCl–65B2O3–10SiO2–5Al2O3 where 0 ? x ? 12.5 wt% is prepared using the normal melt-quenching technique. The optical constants and electrical conductivity and their correlation are investigated, furnished and discussed with the substitution of Li2O for LiCl. The mechanism of the optical absorption and the calculated Urbach energy follow the rule of phonon-assisted transitions. The ionic conduction mechanism is determined by activation energy process. Substitution up to 10 wt% LiCl provides high ionic conductivity (1.9 × 10?2 Ω?1 m?1) due to the high average electronegativity of LiCl which increases the polarizability of lithium ions. The small cation–anion distance approach confirmed the enhancement in ionic conductivity of LiCl containing glass compared to that of Li2O. Due to the large size of Cl? ions, there is an expansion of the lattice which in turn broadens the available path windows. For 12.5 wt% LiCl, anomalous density behavior is observed and a reduction in conductivity is occurred, σ = 5.4 × 10?3 Ω?1 m?1. Owing to the model of bond fluctuation, the reduction is attributed to the increase in the alkali halide concentration which creates bottlenecks that hinder the motion of Li+ ions. The ionic conductivity character is strongly supported by the behavior of the glass ionicity factor, density, molar volume, refractive index, average boron–boron separation, molar refraction, metallization criterion and non-bridging oxygen concentration of the studied glass.  相似文献   

12.
A new kind of germanate glass co-doped with Yb3+–Ho3+ was prepared. The J-O parameters were calculated to be Ω2 = (6.59 ± 0.21) × 10? 20 cm2, Ω4 = (2.77 ± 0.36) × 10? 20 cm2, and Ω6 = (1.90 ± 0.25) × 10? 20 cm2. The little overlap between the absorption cross section and stimulated emission cross section indicates a non-resonant energy transfer process. The calculation demonstrates that the energy transfer between Yb3+ and Ho3+ is one-phonon assisted in a great measure. The gain coefficient of Ho3+ at 2.0 μm was also calculated. The fluorescence measurement shows the Yb3+ co-doping enhances the 2.0 μm emission remarkably.  相似文献   

13.
《Journal of Non》2007,353(24-25):2355-2362
EPR and optical absorption spectra of 0.5 mol% MnO2 doped xLi2O–(30  x)Na2O–69.5B2O3 (5  x  25) glasses have been studied. The EPR spectra exhibit resonance signals characteristic of Mn2+ ions. The resonance signal at g  2.0 is due to Mn2+ ions in an environment close to octahedral symmetry, whereas the resonances at g  4.3 and g  3.3 are attributed to the rhombic surroundings of the Mn2+ ions. The ionic character (A), the number of spins participating in resonance (N), optical band gap energies (Eopt) and Urbach energies (ΔE) show the mixed alkali effect (MAE) with composition. The present study gives an indication that the size of alkalis we choose, is also an important contributing factor in showing the MAE. The variation of N with temperature obeys the Boltzmann law. The optical absorption spectra show a single broad band at ∼21 000 cm−1 corresponding to the transition 6A1g(S)  4T1g(G) which exhibits a blue shift with x. The theoretical values of optical basicity (Λth) have also been evaluated.  相似文献   

14.
This work reports the structural and spectroscopy characterization of poly(styrene sulfonate) (PSS) films doped with neodymium (Nd) ions. Nd–PSS films were processed using the acid of poly(styrene sulfonate) – H–PSS and neodymium nitrate – Nd(NO3)3; the maximum incorporation of Nd ions in the polymeric matrix was equal 19.3%. The absorption in the UV–Vis–NIR spectral region presents typical electronic transitions of Nd3+ ions, with well resolved peaks. The infrared spectra present the transition bands of PSS with characteristic line shape broadening, and the presence of vibrational modes of N–O groups in the range of 1400–720 cm?1, prove the permanence of Nd(NO3)x, with x = 1, 2 and/or 3, in the H–PSS matrix. UV–Vis site selective photoluminescence data indicate that the incorporation of Nd3+ introduces a blue shift in PSS emission (325–800 nm), decreasing the interaction between adjacent PSS lateral groups (aromatic rings). Nd3+ reabsorption and energy transfer effects between the PSS matrix and Nd3+ were also observed. The IR emission of Nd–PSS films at 1076 nm (4F3/2  4I11/2) present constant efficiency, independent on Nd3+ concentration. The Judd–Ofelt theory was employed to analyze radiative properties. The excitation spectra prove the energy transfer between the polymeric matrix and Nd3+. Complex impedance data was used to probe relaxation processes during the charge transport within the polymeric matrix.  相似文献   

15.
A series of neodymium complexes Nd(TTA)3Lx (where TTA = α-thenoyltrifluoroacetonato, Lx (x = 1–5) = H2O, triophenylphosphine oxide (Tppo), 2,2-bipyridine (Bipy), 1,10-phenanthroline (Phen) and 2- (N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (Dpbt) were synthesized and incorporated in poly(methyl methacrylate). Their absorption spectra were measured and analyzed using Judd–Ofelt theory. Near-infrared luminescent spectra were studied and the radiative properties have been stimulated. Laser parameters such as effective bandwidths (Δλeff), stimulated emission cross-sections (σe), and gain bandwidth (σg) had also been calculated and compared with other systems. The effect on the fluorescence branching ratio (β) in the 4F3/24I11/2 transition of different synergistic ligands had been investigated and the relation between β and Judd–Ofelt parameter Ω2, Ω4, Ω6 was discussed. In conclusion, among the five neodymium complexes, Nd(TTA)3Dpbt has the largest Ω2 parameter (33.72 × 10? 20 cm2), stimulated emission cross-sections, which is found promising to be a candidate for laser materials in further application.  相似文献   

16.
We report the optical properties of a fluorochlorozirconate (FCZ) glass with the composition 53% ZrF4, 20% NaF, 3.5% AlF3, 3% LaF3, 0.5% InF3, (20 ? x)% BaCl2, x% BaF2 with x varying from 0% to 2%, and doped with various amounts of trivalent erbium by the addition of ErCl3. Annealing of the as-prepared glass in inert (N2) or reducing (5%H2 + 95%Ar) atmospheres at temperatures that ensure the conversion of the glass into a glass-ceramic by the nucleation of BaCl2 nanocrystals, does not significantly change any of Er3+ related absorption and photoluminescence (PL) characteristics. We have carried out a Judd–Ofelt analysis of the absorption spectra and obtained Ω2 = (1.92 ± 0.3) × 10? 20 cm2, Ω4 = (0.88 ± 0.16) × 10? 20 cm2 and Ω6 = (0.59 ± 0.08) × 10? 20 cm2, and also the radiative lifetimes of the 4I13/24I15/2, 4I11/24I15/2 and 4S3/24I15/2 bands. The radiative lifetime from the Judd–Ofelt analysis for the 4I13/24I15/2 band is in good agreement with the experimentally measured PL decay time. The examination of the optical properties of powdered samples with different average particle size does not show any photon trapping effects. We have determined the spectral absorption and emission cross-sections and then estimated the possible spectral optical gain for varying degrees of relative populations of the 4I13/2 and 4I15/2 manifolds.  相似文献   

17.
An Nd3+:Ca9Gd(VO4)7 crystal with dimensions of ?25×30 mm3 was grown by the Czochralski method. The hardness, thermal expansion coefficient and thermal conductivity coefficient of the crystal were measured. The spectroscopic characteristics of Nd3+:Ca9Gd(VO4)7 crystals were investigated. The absorption band at 810 nm has an FWHM of 10 nm, and absorption cross-sections are 5.81×10?20 cm2 for π-polarization and 7.47×10?20 cm2 for σ-polarization at 810 nm. The emission cross-sections at 1067 nm are 4.2×10?20 and 6.5×10?20 cm2 for π- and σ-polarizations, respectively. The quantum efficiency ηc is equal to 94.3%. To sum up the above results, Nd3+:Ca9Gd(VO4)7 crystal can be regarded as a highly efficient solid state laser material.  相似文献   

18.
O. Cozar  D.A. Magdas  I. Ardelean 《Journal of Non》2008,354(10-11):1032-1035
The local symmetry and interaction between paramagnetic ions in xMoO3(1 ? x)[2 P2O5PbO] glasses with 0.5 ? x ? 50 mol% are investigated by EPR spectroscopy. For x ? 10 mol% the isolated Mo5+ ions surrounded by five oxygen ligands in a square-pyramidal form (C4v symmetry) prevail. The short range disorder in the environment of Mo5+ ions is not significantly (ΔR/R  2%). At high molybdenum content (x > 20 mol%) the dipole–dipole and superexchange coupled Mo5+ ions appear and their number increases with the MoO3 content. These two aspects are also correlated with the network modifier and former role of molybdenum oxide in function of its concentration. Thus a strong depolymerization of the phosphate structure and the formation of P–O–Mo or Mo–O–Mo bonds in studied glasses appear.  相似文献   

19.
Transparent glasses of composition 10BaO.20Bi2O3.(70 ? x)B2O3.xFe2O3 (wt.%) where 0  x  2.0, were characterized by XRD and SEM. Physical, spectroscopic and dielectric properties were investigated. At higher dopant of Fe2O3, EPR results revealed that, the number of Fe3+ ions participate in the resonance is decreased by forming a new signal at g  3.015 due to increase of antiferromagnetic interaction of Fe3+ ions and/or formation of low spin Fe3+ ions in the glass matrix. With initial 0.5 wt.% doping of Fe2O3, less dense glass is formed with colloids of metallic Bi0 atoms. The absorption bands at 604 and 712 nm in F5 glass are ascribed to Bi0 and Bi+ radicals respectively. No characteristic Fe3+ absorption bands (spin-forbidden) are found. Fe2+ ions are increased at higher concentration of Fe2O3. Higher concentration of Fe2O3 is favorable for BO2O?, BO3, BiO6 and FeO6 symmetry unit leads to low band gap and high Urbach energy. By doping of Fe2O3 the dielectric parameters like dielectric constant (ε′), loss (tanδ and ac electrical conductivity (σac) are found to increase.  相似文献   

20.
《Journal of Non》2007,353(18-21):1951-1955
A study of the Nd3+  Yb3 energy transfer processes in transparent oxyfluoride glass ceramics has been carried out as a function of temperature in the 100–700 K range. This host is a two-phase optical material that consists of a low-phonon energy fluoride nanocrystalline phase embedded in a predominantly aluminosilicate glassy medium and has shown to be an interesting matrix for rare earth ions. Luminescence decay curves of single Nd3+ and Yb3+ doped and co-doped samples at different temperatures have been analyzed in order to calculate the energy transfer and backtransfer rates between these ions. Finally, the results have been also investigated to known the phonons involved in the energy transfer processes, concluding at the end that the Nd3+  Yb3+ energy transfer rate takes place by the emission of three phonons with energy around 325 cm−1 and in the other hand, Nd3+  Yb3+ energy transfer rate has been found to be non-negligible for temperatures over 370 K with the requirement of absorption of phonons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号