首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Journal of Crystal Growth》2003,247(3-4):363-370
TiO2 nanopowders have been prepared using 0.1 M titanium tetraisopropoxide (TTIP) in varied pH aqueous solution containing TMC and NP-204 surfactants. Only the powder acquired from a solution of pH=2 has a regular particle size distribution. Anatase phase powders are obtained by calcination in nitrogen in the 250–500°C temperature range. When calcined at 400°C, the diameter of the nanoparticles is approximately 10 nm with a specific surface area of 106.9 m2/g. As the calcination temperature is increased, the particle size increases. Rutile phase powders are formed at calcination temperatures above 600°C.  相似文献   

2.
《Journal of Non》2007,353(11-12):1091-1094
We have demonstrated in this work that single phase of α-Fe2O3 nanoparticle can be prepared using gelatin. It was characterized by X-ray powder diffraction (XRPD) technique, gas sorption technique (BET), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The nanoparticle was obtained from an aqueous solution of gelatin and FeCl3 · 6H2O, as Fe source, annealed in the temperature range of 200–600 °C for 12 h. The mean particle size of this powder measured with XRPD is about 100 nm and this size agrees well with TEM experiments. Also, the TEM result shows agglomeration that was confirmed by BET technique. These results show that gelatin could be an alternative organic precursor to produce metal oxide powders with nanometer dimensions.  相似文献   

3.
《Journal of Non》2007,353(44-46):4195-4198
To investigate temperature dependence of paracrystallinity for opal-CT, a bentonite containing approximately 34% by mass opal-CT have been used as material. Since opal-CT can not be separated entirely, the bentonite samples have been heated at different temperatures in the interval from 200 °C to 1300 °C for 2 h, and at 1050 °C for different time intervals changing from 2 h to 24 h. The X-ray diffraction (XRD) patterns of the original and heated samples have been obtained. The increase in the paracrystallinity has been discussed according to the thermal behavior of the relative intensity (I/I0), relative full width at half-maximum peak height (FWHM/FWHM0  W) and d-value of the most characteristics XRD peak for opal-CT between 0.405 nm and 0.410 nm region. The increase in I/I0 from 1 to 3, and in d(l 0 1) spacing from 0.4050 to 0.4095 and decrease in W from 1 to 0.6 show that there is an increase in paracrystallinity for opal-CT by rising the temperatures between 800 °C and 1300 °C. The increase, of I/I0 value from 1 to 5 by heating at 1050 °C while time increases from 2 h to 24 h shows that the paracrystallinity of opal-CT increase by time and reaches steady state condition approximately 1300 °C.  相似文献   

4.
《Journal of Non》2007,353(18-21):1808-1812
The structure of liquid Ge15Te85 has been studied with neutron diffraction in the liquid state up to 740 °C and in the supercooled liquid state down to 345 °C. The temperature dependences of the diffraction patterns are analyzed. It is shown that the liquid Ge15Te85 can be described by the model of heterogeneous structure, which assumes that the melt consists of atoms joined in clusters and a proportion of atoms with higher mobility that fill the space in between clusters. The number and the size of clusters decrease while the volume fraction of ‘free’ atoms increases under heating.  相似文献   

5.
《Journal of Non》2006,352(38-39):4128-4135
Al-doped titanium dioxide nanoparticles with precisely controlled characteristics were synthesized in an aerosol reactor between 900 °C and 1500 °C by vapor-phase oxidation of titanium tetrachloride. The effect of process variables (reactor temperature, initial TiCl4 concentration, residence time and feeding temperature of oxygen) on particle morphology and phase characteristics was investigated using TEM, XRD, EDS, ICP and XPS, etc. The average particle size increased with decreasing oxygen feeding temperature and increasing reaction temperature, residence time and TiCl4 concentration. The presence of aluminum during gas phase reaction increased the rate of phase transformation from anatase to rutile and altered the particle morphology from polyhedral to irregular crystals. TiO2 and Al2O3 co-precipitated during particle formation which lead to the aluminum solid solution in titania. α-Al2O3 and Al2TiO5 were observed at AlCl3/TiCl4 ratios higher than 1.1 and reactor temperatures in excess of 1400 °C. The rutile content, which increased with increasing Al/Ti ratio and residence time, was at a maximum at about 1200 °C and decreased at both lower and higher reactor temperatures.  相似文献   

6.
Transparent SiO2:Li2O:Nb2O5 glass doped with Tm3+ has been prepared by the sol–gel method, and heat-treated in air (HT) at temperatures between 500 and 800 °C. X-ray diffraction (XRD) patterns and Raman spectroscopy show SiO2 and LiNbO3 phases in samples HT above 650 °C, and a NbTmO4 phase for T > 750 °C. The XRD SEM analysis show increasing particle size and number with the increase of HT temperature. Intra-4f12 transitions due to Tm3+ ion dispersed in the matrix are observed in samples with T > 650 °C. The luminescence is dominated by the 1G4  3F4 (~650 nm), 1D2  3F3 (~780 nm), 3H4  3H6 (~800 nm), 3H5  3H6 (~1200 nm) and 3H4  3F4 (~1500 nm) transitions under resonant excitation to the ion levels.  相似文献   

7.
Tin dioxide thin films were prepared by pulsed laser deposition techniques on clean glass substrates, and the thin films were then annealed for 30 min from 50 to 550 °C with a step of 50 °C, respectively. The influence of the annealing temperature on the microstructural and morphological properties of the tin dioxide thin films was investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. The experimental results showed that the amorphous microstructure almost transformed into a polycrystalline tin dioxide phase exhibiting a preferred orientation related to the (1 1 0), (1 0 1) and (2 1 1) crystal planes with increased temperatures. The thin film annealed at 200 °C demonstrated the best crystalline properties, viz. optimum growth conditions. However, the thin film annealed at 100 °C revealed the minimum average root-mean-square roughness of 20.6 nm with average grain size of 26.6 nm. These findings indicate that the annealing temperature is very important parameter to determining the thin film quality, which involves the phase formation, microstructure and preferred orientation of the thin films.  相似文献   

8.
In this study, the influence of polyelectrolytes on the crystallization of zeolite Y is investigated. The prepared synthesis mixtures are aged at room temperature for 24 h and then left to crystallize. The compositional and structural information are provided by elemental analysis obtained by ICP, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), particle size analyzer and adsorption and desorption isotherms of nitrogen by a volumetric adsorption instrument. The first group of synthesis studies is conducted by using solutions containing no additive (WA), nonionic (NI), 100% anionic (100A), and 100% cationic (100C) polyelectrolytes. The crystallization temperature and crystallization time are kept at 100 ºC and 48 h, respectively. The experimental results show that nonionic polyelectrolyte has the most influence on the crystallization of zeolite NaY. In the second group of synthesis studies, the effects of polyelectrolytes with various degrees of anionic properties (10%, 50% and 70%) of the same chemical structure are investigated by conducting crystallization experiments at 100 °C for a duration of 48 h. The results suggest that; particle size, crystallinity and BET surface area (SBET) can be controlled by adding anionic polyelectrolytes to the solution.  相似文献   

9.
《Journal of Non》2007,353(24-25):2469-2473
Nanocrystalline thin films of titanium dioxide have been fabricated on glass and silica substrates from partially hydrolyzed precursor solution. These films were subjected to heat treatment for 1 h at temperatures 100, 200, 300, 400, 500, 600, 700, 800 and 900 °C and characterized by XRD, SEM, XPS and optical techniques. As deposited films are found to be amorphous and also contain hydroxyl and organic functional groups. Films heat treated above 100 °C do not contain hydroxyl and organic functional groups. Microcrystalline behavior is observed in the films heat treated above 300 °C. Crystallite size increases from ∼5 to 50 nm as sintering temperature is increased from 300 to 700 °C. Formation of anatase phase with c-axis length 7.03 Å is observed in the films annealed up to 700 °C. These films peel off from the substrate beyond 700 °C annealing temperature. Density as well as refractive index of the films increases with increase in annealing temperature up to 700 °C. Refractive index is found to show Cauchys behavior. Transmission better than 70% is observed in the visible range. There is a strong absorption around 370 nm, which is attributed to band gap absorption of the material.  相似文献   

10.
《Journal of Crystal Growth》2003,247(3-4):393-400
Using a highly conductive ZnO(ZnAl2O4) ceramic target, c-axis-oriented transparent conductive ZnO:Al2O3 (ZAO) thin films were prepared on glass sheet substrates by direct current planar magnetron sputtering. The structural, electrical and optical properties of the films (deposited at different temperatures and annealed at 400°C in vacuum) were characterized with several techniques. The experimental results show that the electrical resistivity of films deposited at 320°C is 2.67×10−4 Ω cm and can be further reduced to as low as 1.5×10−4 Ω cm by annealing at 400°C for 2 h in a vacuum pressure of 10−5 Torr. ZAO thin films deposited at room temperature have flaky crystallites with an average grain size of ∼100 nm; however those deposited at 320°C have tetrahedron grains with an average grain size of ∼150 nm. By increasing the deposition temperature or the post-deposition vacuum annealing, the carrier concentration of ZAO thin films increases, and the absorption edge in the transmission spectra shifts toward the shorter wavelength side (blue shift).  相似文献   

11.
A series of 1.4, 1.8, and 4.0 nm thick HfO2 films deposited on Si(1 0 0) substrates have been measured by extended X-ray absorption fine-structure prior to anneal processing, following a standard post deposition anneal of 700 °C for 60 s in NH3 ambient, and following an additional rapid thermal anneal cycle of 1000 °C for 10 s in N2 ambient. Analysis of the second coordination shell gives clear evidence of increased ordering with increasing film thickness at each temperature. Similarly, increased ordering with increasing anneal temperature is evident for each film thickness. Although X-ray diffraction and high resolution transmission electron microscopy indicated the 1.4 nm HfO2 samples to be amorphous, EXAFS has distinguished nanocrystalline from amorphous states for these films.  相似文献   

12.
High-quality ZnO films were grown on Si(1 0 0) substrates with low-temperature (LT) ZnO buffer layers by an electron cyclotron resonance (ECR)-assisted molecular-beam epitaxy (MBE). In order to investigate the optimized buffer layer temperature, ZnO buffer layers of about 1.1 μm were grown at different growth temperatures of 350, 450 and 550 °C, followed by identical high-temperature (HT) ZnO films with the thickness of 0.7 μm at 550 °C. A ZnO buffer layer with a growth temperature of 450 °C (450 °C-buffer sample) was found to greatly enhance the crystalline quality of the top ZnO film compared to others. The root mean square (RMS) roughness (3.3 nm) of its surface is the smallest, compared to the 350 °C-buffer sample (6.7 nm), the 550 °C-buffer sample (7.4 nm), and the sample without a buffer layer (6.8 nm). X-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were carried out on these samples at room temperature (RT) in order to characterize the crystalline quality of ZnO films. The preferential c-axis orientations of (0 0 2) ZnO were observed in the XRD spectra. The full-width at half-maximum (FWHM) value of the 450 °C-buffer sample was the narrowest as 0.209°, which indicated that the ZnO film with a buffer layer grown at this temperature was better for the subsequent ZnO growth at elevated temperature of 550 °C. Consistent with these results, the 450 °C-buffer sample exhibits the highest intensity and the smallest FWHM (130 meV) of the ultraviolet (UV) emission at 375 nm in the PL spectrum. The ZnO characteristic peak at 438.6 cm−1 was found in Raman scattering spectra for all films with buffers, which is corresponding to the E2 mode.  相似文献   

13.
《Journal of Non》2006,352(26-27):2818-2828
Ceramic fiber products specially alumina mat because of low thermal conductivity and high melting point are used as high temperature insulating materials. Alumina has so high melting point (Tm > 2040 °C) that its mat can be produced through sol–gel method. In this research alumina mat has been manufactured by sol–gel spinning method using our laboratory-designed centrifugal spinneret. The desired viscosity of sol for spinning is 150 P. Phase transformation of the product begins at 600 °C and there is not any amorphous phase at 800 °C and theta alumina (θ-Al2O3) is the main phase. In this work, transformation of transitional phase to alpha alumina (α-Al2O3) takes place from 1000 °C to 1200 °C. The optimum percent of silica in alumina mat is 4 wt%. Fibers constitute network structure that their average diameter is about 10 μm and contains very fine grains (100 nm). The silica percent concerning the limits of this study (<10 wt%) does not effect on fiber diameter, but grain size decreases from about 200 nm to less than 100 nm while increasing silica percent.  相似文献   

14.
B. Kościelska  A. Winiarski 《Journal of Non》2008,354(35-39):4349-4353
Sol–gel derived xNb2O5–(100 ? x)SiO2 films (where x = 100, 80, 60, 50, 40, 20, 0 mol%) were nitrided at various temperatures (800 °C, 900 °C, 1000 °C, 1100 °C and 1200 °C). The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The XRD results have shown that the temperatures below 1100 °C were too low to obtain a pure NbN phase in the samples. The AFM observations indicate that the formation of the NbN phase and the size of NbN grains are related to the silica content in the layer. NbN grains become more regular and larger as the niobium content increases. The maximum grain size of about 100 nm was observed for x = 100. Preparation of the Nb2O5–SiO2 sol–gel derived layers and the subsequent nitridation is a promising method of inducing crystalline NbN in amorphous matrices. It follows from the XPS results that a small amount of Nb2O5 remains in the films after nitridation at 1200 °C and that nitrogen reacted not only with Nb2O5 but also with SiO2.  相似文献   

15.
《Journal of Non》2006,352(23-25):2343-2346
Zinc oxide thin films were deposited on silicon and corning-7059 glass substrates by plasma enhanced chemical vapor deposition at different substrate temperatures ranging from 36 to 400 °C and with different gas flow rates. Diethylzinc as the source precursor, H2O as oxidizer and argon as carrier gas were used for the preparation of ZnO films. Structural and optical properties of these films were investigated using X-ray diffraction, reflection high energy electron diffraction, atomic force microscopy and photoluminescence. Highly oriented films with (0 0 2) preferred planes were obtained on silicon kept at 300 °C with 50 ml/min flow rate of diethylzinc without any post annealing. Reflection high energy electron diffraction pattern also showed the crystalline nature of these films. A textured surface with rms roughness ∼28 nm was observed by atomic force microscopy for the films deposited at 300 °C. A sharp peak at 380 nm in the PL spectra indicated the UV band-edge emission.  相似文献   

16.
《Journal of Non》2007,353(24-25):2328-2332
Chalcogenide glasses based on the cadmium–selenium system, with the selenium composition varying from 0 to 7.5 wt% have been prepared using melt-quenching method i.e., single-roller quenching technique. The X-ray diffraction (XRD) and selected area electron diffraction (SAD) patterns of the CdSe ribbons indicate that the ribbons are amorphous. The transmission electron microscopy (TEM) studies carried out on these ribbons reveal that the constituents are inhomogeneously distributed in these ribbons. The temperature dependence of the electrical resistivity, ρ and thermoelectric power (TEP) of these ribbons has been studied in the temperature range 30–350 °C. The sudden jump in the values of electrical resistivity at a specific temperature for each case in these ribbons has been correlated with the phase transition i.e., the onset of crystallization in these materials during heating. The crystallization temperature, Tc has been found to be a function of Se content of these ribbons. The phase change in these ribbons as a result of heating does not seem to affect the variation of TEP with temperature. However, the slope of TEP versus temperature curves depends on Se content in these ribbons. The differential scanning calorimetry (DSC) of these ribbons indicates that the supercooled region in these ribbons extends from 50 to 70 °C. The composition CdSe ribbon with 0.5 wt% Se has the highest value of Tc and glass forming ability, Kg = 0.7.  相似文献   

17.
The redox state of iron in soda-lime silicate glass was determined by analysis of the optical absorption bands due to Fe2+ and Fe3+ states. When raw materials containing Fe2O3 were heated gradually to 1400 °C, the total-Fe content of the glass was 9.4% Fe2+, but rapid heating at 1400 °C increased the Fe2+ content to 11.7%. The oxygen activity (aO2) in the corresponding melts was measured using zirconia and Pt electrodes. The value increased with increasing temperature in the gradually heated sample and reached log(aO2) = 0.03 at 1400 °C, but was about 2.5 times lower in the rapidly heated sample at log(aO2) = ?0.37. After SnO addition to the raw material, oxygen activity depended strongly on heating speed: log(aO2) at 1400 °C fell as low as ?1.8 with rapid temperature increase but was about ?0.2 or higher with gradual heating. The Fe2+ content of the cooled glass was consistent with the oxygen activity of the melts. The effect of heating speed was attributed to the formation of a melt layer on the surface of the raw material.  相似文献   

18.
Doris Ehrt 《Journal of Non》2008,354(2-9):546-552
Glasses with 55–60 mol% SnO and 40–45 mol% P2O5 have shown extremely large differences in the chemical and thermal properties depending on the temperature at which they were melted. Glasses prepared at low melting temperature, 450–550 °C, had low Tg, 150–200 °C, and low chemical stability. Glasses prepared at high melting temperature, 800–1200 °C, had much higher Tg, 250–300 °C, and much higher chemical stability. No significant differences were found by 119Sn Mössbauer and 31P Nuclear Magnetic Resonance spectroscopy. Large differences in the OH-content could be detected as the reason by infrared absorption spectroscopy, thermal analyses, and 1H Nuclear Magnetic Resonance spectroscopy. In samples with low Tg, a broad OH – vibration band around 3000 nm with an absorption intensity >20 cm?1, bands at 2140 nm with intensity ~5 cm?1, at 2038 nm with intensity ~2.7 cm?1, and at 1564 nm with intensity ~0.4 cm?1 were measured. These samples have shown a mass loss of 3–4 wt% by thermal gravimetric analyses under argon in the temperature range 400–1000 °C. No mass loss and only one broad OH-band with a maximum at 3150 nm and low absorption intensity <4 cm?1 could be detected in samples melted at high temperature, 1000–1200 °C, which have much higher Tg, ~300 °C, and much higher chemical stability.  相似文献   

19.
Amorphous and nano-crystalline Y3Al5O12:Tb phosphor samples were obtained via a facile combustion method by calcination at various temperatures, using yttrium oxide and aluminum nitrite as starting materials and citric acid as fuel. XRD, FT-IR and TEM results showed that the products were amorphous if prepared at 750 °C, well-crystalline when treated above 850 °C. In addition, partially crystalline YAG phase was observed at 800 °C (in air). The excitation spectra of the samples calcined at 750 °C and 800 °C exhibited some difference in the 230–255 nm range in comparison to those of nano-crystalline YAG:Tb, i.e. an extra band centered at 250 nm was detected via Gaussian curve-fitting. Furthermore, the photoluminescence intensity of as-synthesized samples decreased obviously with increasing the crystallinity under 250 nm excitation. Contrary, it increased monotonously when altering the excitation wavelength to 323 nm. The concentration-dependent emission spectra of samples calcined at 800 °C revealed that the strongest intensity could be obtained with 10% Tb doping. Red-shifts indicated changes of the inter-atomic distances within the Tb3+ coordination polyhedron with increasing Tb concentration. The low temperature photoluminescence of partially crystalline YAG:10% Tb was also investigated, displaying good-resolution but reduced intensity compared to the room-temperature photoluminescence.  相似文献   

20.
《Journal of Non》2006,352(23-25):2539-2542
In this study, we correlated the photoluminescence (PL) with the microstructure of ZnS:Mn phosphor powders prepared by firing ZnS with MnO (1 mol%), NaCl (1 mol%) and ZnS nanocrystallites (NCs) in the range of 0–100 wt% at 600–1000 °C for 2 h in the atmosphere of 3%H2/Ar. ZnS NCs of 10–30 nm in size were produced by co-precipitation of zinc nitrate and sodium sulfide solutions at room temperature. Thermal analysis (DTA/TG) and X-ray diffraction (XRD) results indicated that the cubic-hexagonal transformation temperature of ZnS NCs was lowered to approximately 600 °C, which was much lower than that of bulk ZnS (1020 °C). PL measurements revealed that ZnS:Mn fired with 1 wt% ZnS NCs showed the optimal luminescence intensity when compared to those without or with higher ZnS NCs (>1 wt%). An appropriate amount of ZnS NCs (1 wt%) acting as the flux in the firing process was inferred to avoid the inhomogeneous distribution of Mn2+ as well as the migration of excitation energy to quenching sites and therefore to result in the enhanced PL intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号