首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the properties of polycrystalline Ge thin films, which are a candidate material for the bottom cells of low cost monolithic tandem solar cells, ∼300 nm in situ hydrogenated Ge (Ge:H) thin films were deposited on silicon nitride coated glass by radio-frequency magnetron sputtering. The films were sputtered in a mixture of 15 sccm argon and 10 sccm hydrogen at a variety of low substrate temperatures (Ts)≤450 °C. Structural and optical properties of the Ge:H thin films were measured and compared to those of non-hydrogenated Ge thin films deduced in our previous work. Raman and X-ray diffraction spectra revealed a structural evolution from amorphous to crystalline phase with increase in Ts. It is found that the introduction of hydrogen gas benefits the structural properties of the polycrystalline Ge film, sputtered at 450 °C, although the onset crystallization temperature is ∼90 °C higher than in those sputtered without hydrogen. Compared with non-hydrogenated Ge thin films, hydrogen incorporated in the films leads to broadened band gaps of the films sputtered at different Ts.  相似文献   

2.
The structural investigations of fullerite films were performed using high‐resolution electron microscopy, electron diffraction and electron energy loss spectroscopy and X‐ray photoelectron spectroscopy. In particular defects such as dislocations, stacking faults and twins were studied in details. It was shown that fullerite films could be characterized by a face‐centered cubic (f.c.c.) structure with lattice parameter a = 1.416 nm. They are distinguished for their rich polytypic structure that is caused by breaking of alteration of closely packed planes of (111) type. The quantitative method based on information theory using the “run‐length encoding” algorithm was suggested to evaluate the degree of disorder in the f.c.c structure of thin fullerite films.  相似文献   

3.
4.
Influence of Si doping on the optical and structural properties of InGaN epilayers with different Si concentrations was investigated in detail by means of high-resolution X-ray diffraction (HRXRD), scanning electron microscope (SEM), Cathodoluminescence (CL) and photoluminescence (PL). It was found that a small amount of Si doping in InGaN could enhance luminescence intensity, improve the crystal quality of InGaN and suppress the formation of V-defects in InGaN. Further investigation by CL showed that V-defects act as nonradiative center, which lower the luminescence efficiency of InGaN. Based on above-mentioned results, one possible mechanism of influence of Si doping on the formation of V-defects in InGaN was also proposed in this paper.  相似文献   

5.
6.
We report the effects of P incorporation on the nanometer-scale structural and electrical properties of amorphous and nanocrystalline mixed-phase Si:H films. In the intrinsic and weakly P-doped (3 × 1018 at/cm3) films, the nanocrystallites aggregate to cone-shaped structures. Conductive atomic force microscopy images showed high current flows through the nanocrystalline cones and a distinct two-phase structure in the micrometer range. Adding PH3 into the processing gas moved the amorphous/nanocrystalline transition to a higher hydrogen dilution ratio required for achieving a similar Raman crystallinity. In a heavily P-doped (2 × 1021 at/cm3) film, the nanocrystalline aggregation disappeared, where isolated grains of nanometer sizes were distributed throughout the amorphous matrix. The heavily doped mixed-phase film with 5–10% crystal volume fraction showed a dramatic increase in conductivity. We offer an explanation for the nanocrystalline cone formation based on atomic hydrogen enhanced surface diffusion model, and propose that the coverage of P-related radicals on the existing nanocrystalline surface during film growth and the P segregation in grain boundaries are responsible for preventing new nucleation on the surface of the existing nanocrystallites, resulting in nanocrystallites dispersed throughout the amorphous matrix.  相似文献   

7.
Nanocrystalline thin films of copper nitride were grown on Si (1 0 0) wafers at a low substrate temperature by reactive magnetron sputtering of Cu target with the mixture of nitrogen and argon. The influence of nitrogen deficiency upon the structural, optical and electrical properties of as-deposited films was investigated. X-ray diffraction confirms the presence of cubic Cu3N and Cu biphases irrespective of carefully optimized processing parameters. With a Cu content approaching the stoichiometry for Cu3N, the films assume a smooth morphology with densely-packed nanocrystallites of about 40–60 nm in size. Those deposits containing more than 79% Cu are metallic conductors with excellent electrical conductivity via a percolation mechanism, whereas the slightly substoichiometric Cu3N films show a typical behavior of deficit semiconductor, with an optical gap of about 1.85 eV as revealed by photoreflectance measurement. All the observations are discussed in terms of nitrogen reemission from the growing film.  相似文献   

8.
n-Type hydrogenated nanocrystalline cubic silicon carbide (nc-3C–SiC:H) films have been deposited by very high-frequency plasma-enhanced chemical vapor deposition at a low substrate temperature of about 360 °C to apply this material to the window layer of heterojunction crystalline silicon (HJ-c-Si) solar cells. We investigated the effect of in situ doping on deposition rate, crystalline volume fraction and dark conductivity to optimize properties of the material. We also fabricated HJ-c-Si solar cells with a n-type nc-3C–SiC:H window layer. The solar cells shows high internal quantum efficiency of 0.90 at a wavelength of 400 nm, indicating that n-type nc-3C–SiC:H deposited by VHF-PECVD is a promising candidate of the window layer of HJ-c-Si solar cells.  相似文献   

9.
A complex investigation into the structural perfection of the Si/SiGe superlattices grown by molecular-beam epitaxy at different temperatures of the Si substrate has been carried out by high-resolution X-ray diffraction analysis, secondary ion mass spectrometry (SIMS), and transmission electron microscopy (TEM). It is demonstrated that the combination of these methods makes it possible to describe in sufficient detail the distributions of the strains and Ge concentrations in the elastically strained superlattices and also to evaluate the sharpness of the layer interfaces. It is shown that the densitometry of electron microscope images of the superlattice cross-sections permits characterization of the relative sharpness of the layer interfaces and a qualitative representation of the Ge distribution throughout the thickness of the SiGe layers.  相似文献   

10.
The problem of structure investigation of thin films using laboratory XRD diffraction intensities was discussed as a matter of debate. Is the variation in relative intensities of the diffraction patterns due to crystallographic preferred orientation, lattice defects or both? The answer to this question shows a discrepancy in the literatures. The present work is an attempt to propose a possible approach to judge the most probable answer. Thin films of SnO2 were prepared by spray pyrolysis technique using solution of different SnCl2 concentrations (molarity); at fixed substrate temperature and deposition time. The theoretically calculated integrated intensities together with the experimentally obtained and calculated XRD data (relative intensities, texture coefficients and profile analysis) were considered together in order to get the proper picture of the structure characteristics of the prepared films. The complete picture can be assembled by integration and correlation of all the crystallographic information that are extracted from the diffraction pattern including not only the observed intensities but also the size/strain analysis and lattice parameters. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Epitaxial growth of ZnO thin films on Si substrates by PLD technique   总被引:1,自引:0,他引:1  
Epitaxial ZnO thin films have been grown on Si(1 1 1) substrates at temperatures between 550 and 700 °C with an oxygen pressure of 60 Pa by pulsed laser deposition (PLD). A ZnO thin film deposited at 500 °C in no-oxygen ambient was used as a buffer layer for the ZnO growth. In situ reflection high-energy electron diffraction (RHEED) observations show that ZnO thin films directly deposited on Si are of a polycrystalline structure, and the crystallinity is deteriorated with an increase of substrate temperature as reflected by the evolution of RHEED patterns from the mixture of spots and rings to single rings. In contrast, the ZnO films grown on a homo-buffer layer exhibit aligned spotty patterns indicating an epitaxial growth. Among the ZnO thin films with a buffer layer, the film grown at 650 °C shows the best structural quality and the strongest ultraviolet (UV) emission with a full-width at half-maximum (FWHM) of 86 meV. It is found that the ZnO film with a buffer layer has better crystallinity than the film without the buffer layer at the same substrate temperature, while the film without the buffer layer shows a more intense UV emission. Possible reasons and preventive methods are suggested to obtain highly optical quality films.  相似文献   

12.
Thin zirconium nitride (ZrN) films were prepared by using reactive direct current (DC) magnetron sputtering onto D9 steel substrates. XRD technique was employed to study the coatings, observing variations of crystallite size, crystallite texture and lattice constant, as a function of substrate temperature. Chemical states of the ZrN thin films were determined by X‐ray photoelectron microscopy (XPS). AFM picture showed the presence of spherical shaped grains on the top of homogeneous granular surface. The hardness and elastic modulus values were measured by nanoindendation and their values are 18.5 and 343 GPa respectively. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Two series of hydrogenated silicon thin films were deposited by the rf-magnetron sputtering (RFMS) at relatively low growth temperatures (Ts = 100 °C), in order to use the new generation of substrates sensitive to elevated temperatures. The effect of the argon gas diluted in hydrogen, on the optical and on the structural properties was carefully investigated by means of optical transmission (OT) measurements, Fourier transform infrared spectroscopy and spectroscopic ellipsometry (SE) technique. The results of this investigation suggest the existence of a threshold dilution around a gas mixture of argon (40%) and hydrogen (60%) for which the crystallization occurs, even at low deposition temperatures. The difference between the amorphous and the crystallized structures is well revealed by the OT and the IR absorption results, and strongly confirmed by the SE ones. The production of Si crystallites in the plasma as means of producing nanocrystalline by RFMS is suggested.  相似文献   

14.
《Journal of Non》2006,352(28-29):3126-3133
Hydrogenated nanocrystalline silicon (nc-Si:H) films were deposited using plasma-enhanced chemical vapor deposition from a SiF4/SiH4/H2 gas mixtures. Properties were examined of nc-Si:H films produced by decreasing the deposition temperature (Td) under two different hydrogen dilution ([H2]) conditions. For these films, the X-ray diffraction, the Raman scattering, the Fourier transform infrared absorption and the stress were investigated. Our results show that the decrease in Td has significant effects in the decrease of the average grain size (〈δ〉), the crystalline volume fraction (ρ) values, and an increase in the density of SiH-related bonds (NSiH) values. On the contrary, increases in [H2] decreased the 〈δ〉 and the NSiH, while the ρ were increased. Our experiments also confirmed that the increase in ρ corresponds with the decrease in NSiH. In view of these results, it may be concluded that the use of both low Td and high [H2] conditions might lead to growth of nc-Si:H films with small grains and high crystallinity. In this context, the surface processes (such as diffusion and etching) for the growth of nc-Si:H films were extensively discussed in this current work.  相似文献   

15.
Epitaxial GaN films have been grown on c-cut sapphire substrates by pulsed laser deposition (PLD) using a KrF laser. The properties of GaN films were improved by increasing the growth temperature to 800°C and the nitrogen pressure during growth to 10 mTorr. Room-temperature photoluminescence exhibits a strong band-edge emission at 3.4 eV. From transmission electron microscopy (TEM), the predominant defects in PLD-GaN observed are stacking faults parallel to the interface and screw dislocations along c-axis, the latter differing from the previously published results where most of the threading dislocation in GaN grown by other techniques are of edge type with Burgers vector of .  相似文献   

16.
Thin films of Sb2Te2Se were prepared by conventional thermal evaporation of the presynthesized material on Corning glass substrates. The chemical composition of the samples was determined by means of energy‐dispersive X‐ray spectrometry. X‐ray diffraction studies on the as‐deposited and annealed films revealed an amorphous‐to‐crystalline phase transition. The as‐deposited and annealed films at T a = 323 and 373 K are amorphous, while those annealed at T a= 423 and 473 K are crystalline with a single‐phase of a rhombohedral crystalline structure as that of the source material. The unit‐cell lattice parameters were determined and compared with the reported data. The optical constants (n , k ) of the investigated films were determined from the transmittance and reflectance data at normal incidence in the spectral range 400–2500 nm. The analysis of the absorption spectra revealed non‐direct energy gaps, characterizing the amorphous films, while the crystalline films exhibited direct energy gaps. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
ITO–SiOxnSi semiconductor–insulator–semiconductor (SIS) structures have been produced with a simple spraying technique. It is shown that the structures obtained in such a way may be considered as an induced p–n diode, in which the polycrystalline tin–doped indium oxide (ITO) layer spray deposited on the preliminary treated silicon surface leads to an inversion p-layer at the interface. Solar cells with an active area of 1–4 cm2 have been fabricated based on ITO–SiOxnSi structures and studied. Under AM0 illumination conditions, the efficiency is nearly 11%, whereas it exceeds 12% for AM1.5 illumination conditions. The theoretical analysis provided in this work shows a good agreement with experimental results and allows for predicting the efficiency of the cells depending on the silicon electro-physical properties.  相似文献   

18.
Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350‐550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (Ts) on the structural, morphological, optical, and electrical properties of the films were investigated using x‐ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall‐effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80‐330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all Ts. With the increase of Ts the intensity of the diffraction peaks increased and well‐resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38‐1.18 eV. Hall‐effect measurements revealed the resistivity of films in the range 112‐20 Ω cm for films deposited at different Ts. The activation energy for films deposited at different Ts was in the range of 0.14 eV‐0.28 eV as derived from the analysis of the data of low‐temperature resistivity measurements. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
《Journal of Non》2006,352(9-20):964-967
We have studied structural and electronic properties of μc-Si:H films deposited from SiH4 + H2 and SiH4 + H2 + Ar gas mixtures. The use of Ar containing gas mixtures for depositions allows us to increase deposition rate by a factor of two and to obtain films with an important fraction of large grains in comparison with SiH4 + H2 gas mixtures. Electronic properties of fully crystallized films become more intrinsic with the increase of large grain fraction. Deposition of highly p- and n-doped μc-Si:H layers from the dopant/SiH4 + H2 gas mixture at a temperature of 175 °C is possible without any remarkable changes in crystallinity in comparison with undoped films deposited with the same discharge conditions.  相似文献   

20.
《Journal of Non》2006,352(9-20):1250-1254
Very good electronic properties of hot-wire CVD a-Si,Ge:H alloys have been established by junction capacitance methods. The samples were deposited using a tantalum filament maintained at about 1800 °C instead of the usual 2000 °C tungsten filament process. Urbach energies below 45 meV were found, as well as annealed defect densities below 1016 cm−3, for Ge fractions up to 30 at.%. However, samples with 1019 cm−3 levels of oxygen exhibited much broader Urbach energies and higher defect densities. Light induced degradation was examined in detail for one a-Si,Ge:H alloy sample and compared to the behavior of PECVD grown a-Si:H alloys of similar optical gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号