首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of experimental and computational fluid dynamics-based reactor modeling studies were utilized to study the effects of process conditions on GaN nanowire growth by metalorganic chemical vapor deposition (MOCVD) in an isothermal tube reactor. The GaN nanowires were synthesized on (0 0 0 1) sapphire substrates using nickel thin films as a catalyst. GaN nanowire growth was observed over a furnace temperature range of 800–900 °C at V/III ratios ranging from 33 to 67 and was found to be strongly dependent on the position of the substrate relative to the group III inlet tube. The modeling studies revealed that nanowire growth consistently occurred in a region in the reactor where the GaN thin-film deposition rate was reduced and the gas phase consisted primarily of intermediate species produced by the reaction and decomposition of trimethylgallium–ammonia adduct compounds. The GaN nanowires exhibited a predominant [1 1 2¯ 0] growth direction. Photoluminescence measurements revealed an increase in the GaN near-band edge emission intensity and a reduction in the deep-level yellow luminescence with increasing growth temperature and V/III ratio.  相似文献   

2.
The electron cyclotron resonance plasma-enhanced metalorganic chemical vapor deposition technology (ECR–MOPECVD) is adopted to grow GaN films on (0 0 0 1) α-Al2O3 substrate. The gas sources are pure N2 and trimethylgallium (TMG). Optical emission spectroscopy (OES) and thermodynamic analysis of GaN growth are applied to understand the GaN growth process. The OES of ECR plasma shows that TMG is significantly dissociated in ECR plasma. Reactants N and Ga in the plasma, obtained easily under the self-heating condition, are essential for the GaN growth. They contribute to the realization of GaN film growth at a relatively low temperature. The thermodynamic study shows that the driving force for the GaN growth is high when N2:TMG>1. Furthermore, higher N2:TMG flow ratio makes the GaN growth easier. Finally, X-ray diffraction, photoluminescence, and atomic force microscope are applied to investigate crystal quality, morphology, and roughness of the GaN films. The results demonstrate that the ECR–MOPECVD technology is favorable for depositing GaN films at low temperatures.  相似文献   

3.
《Journal of Non》2006,352(9-20):1008-1010
We report on synthesis and materials physics of polycrystalline silicon thin films deposited on glass with rarely observed ‘five-fold’ symmetry or ‘icosahedral’ symmetry. We invented these ‘novel form’ of polycrystalline silicon thin films by ceramics hot wire chemical vapor deposition (hot-wire CVD). A new physical effect in hot-wire CVD technology has been proposed that controls the nucleation and growth of silicon thin films on glass substrate.  相似文献   

4.
A fabrication process for growth of GaN lateral polarity junctions consisting of Ga-polar and N-polar domains grown simultaneously side-by-side on c-plane sapphire was developed using the polarity control scheme. An ammonia-annealing step following deposition and patterning of a thin low-temperature AlN nucleation layer played a crucial role in avoiding mixed-polarity growth of the remaining AlN nucleation layer, as well as in nitriding the bare sapphire surface to facilitate growth of N-polar GaN. The achievement of both polar domains, free from inversion domains within a contiguous domain, led to Ga-polar domain exhibiting featureless morphology with highly resistive characteristics, while N-polar domains exhibited hexagonally faceted morphology and were highly conductive.  相似文献   

5.
In this work, we report the growth of smooth, high-quality N-face GaN on c-plane sapphire by metalorganic chemical vapor deposition. It is found that the nitridation temperature of sapphire has a critical effect on the surface morphology of N-face GaN. Sapphire after a severe nitridation gives rise to a high density of hexagonal hillocks during N-face GaN growth. Smooth N-face GaN has been grown on appropriately nitridized sapphire. The N-polarity of the GaN film has been confirmed with no inversion domain by convergent beam electron diffraction. Controlled growth interruption is carried out to study the nucleation evolution during N-face GaN growth, which is found distinctly different from the two-step growth of Ga-face GaN. Atomically smooth N-face GaN has been achieved with comparable structural quality to Ga-face GaN.  相似文献   

6.
Various techniques for morphological evolution of InGaN/GaN multiple quantum well (MQW) structures grown by metalorganic chemical vapor deposition have been evaluated. Atomic force microscopy, photoluminescence (PL) and X-ray diffraction measurements have been used for characterization. It is shown that inclusions, that are generated into the V-defects in the InGaN quantum wells (QW), can be removed by introducing a small amount of hydrogen during the growth of GaN barriers. This hydrogen treatment results in partial loss of indium from the QWs, but smooth surface morphology of the MQW structure and improved optical quality of InGaN wells are obtained. The density of the V-defects could be reduced by reducing the dislocation density of the underlying GaN buffer.  相似文献   

7.
Nonstoichiometric zirconium carbide crystals with various compositions were prepared by chemical vapor deposition. Two gaseous mixtures, zirconium tetrachloride and argon, toluene and hydrogen, were introduced to the reaction zone where a graphite substrate was heated between 1200 and 1400°C. The deposition rate was proportional to the partial pressure of toluene. The compositional ratio of nC/nZr in the gaseous mixture from 2.0 to 6.0 was found to be optimum for producing needle-like crystals. Needle-like crystal with smaller size were formed when the ratio of nC/nZr was smaller than 2.0, and less needle-like crystals accompanied with more carbon were also produced when the ratio of nC/nZr was larger than 6.0. The temperature of the substrate suitable for the growth of needle crystals was in the range from 1250 to 1300°C. The lattice constants of the products varied as a function of the ratio of nC/nZr in the gaseous mixtures.  相似文献   

8.
The boule-like growth of GaN in a vertical AIXTRON HVPE reactor was studied. Extrinsic factors like properties of the starting substrate and fundamental growth parameters especially the vapor gas composition at the surface have crucial impact on the formation of inverse pyramidal defects. The partial pressure of GaCl strongly affects defect formation, in-plane strain, and crystalline quality. Optimized growth conditions resulted in growth rates of 300–500 μm/h. GaN layers with thicknesses of 2.6 and of 5.8 mm were grown at rates above 300 μm/h. The threading dislocation density reduces with an inverse proportionality to the GaN layer thickness. Thus, it is demonstrated that growth rates above 300 μm/h are promising for GaN boule growth.  相似文献   

9.
Zn-doped AlInAs growth at high temperature, mainly at 750°C, by metalorganic chemical vapor deposition is investigated. When introducing DEZn during AlInAs growth, it is necessary to increase the TMAl flow rate in order to make the layer lattice-matched to InP. This is due to the enhanced In incorporation rather than the large covalent radius of Zn. To clarify the electrical characteristics, the dependence of the DEZn flow rate, the V/III ratio, and the growth temperature are investigated using the van der Pauw Hall method. In our growth system, a GaInAs intermediate layer is effective in preventing n-type inversion in Zn-doped AlInAs, which occurs when it is grown directly on an InP buffer layer. In addition, a large DEZn flow rate is effective for reducing carrier compensation in Zn-doped AlInAs layers grown at 750°C. Si impurities are apparently the cause of the type-inversion and compensation in Zn-doped AlInAs.  相似文献   

10.
High quality InAlN/GaN heterostructures are successfully grown on the (0 0 0 1) sapphire substrate by pulsed metal organic chemical vapor deposition. The InAlN barrier layer with an indium composition of 17% is observed to be nearly lattice matched to GaN layer, and a smooth surface morphology can be obtained with root mean square roughness of 0.3 nm and without indium droplets and phase separation. The 50 mm InAlN/GaN heterostructure wafer exhibits a mobility of 1402 cm2/V s with a sheet carrier density of 2.01×1013  cm?2, and a low average sheet resistance of 234 Ω/cm2 with a sheet resistance nonuniformity of 1.22%. Compared with the conventional continual growth method, PMOCVD reduces the growth temperature of the InAlN layer and the Al related prereaction in the gas phase, and consequently enhances the surface migration, and improves the crystallization quality. Furthermore, indium concentration of InAlN layer can be controlled by adjusting the pulse time ratio of TMIn to TMAl in a unit cycle, the growth temperature and pressure, as well as the InAlN layer thickness by the number of unit cycle repeats.  相似文献   

11.
We have investigated photoluminescence (PL) and electron Hall mobility for unintentionally doped GaN epitaxial layers grown by low-pressure metalorganic chemical vapor deposition on c-plane Al2O3 substrates. Four GaN films having identical dislocation density but remarkably different electron Hall mobility were exploited. At low temperature (12 K), a PL line associated with a bound exciton was observed and strong correlations were found between the Hall mobility and the PL intensity of the exciton transition. That is, relative PL intensity of the bound exciton to a donor-bound exciton monotonously increased with decreasing the electron mobility of the GaN films. This correlation was interpreted in terms of electrical compensation. Efforts to find the chemical origin of the PL line led to the conclusion that the BE line originated neither from threading dislocations nor from extrinsic point defects. Intrinsic acceptors such as Ga vacancy and GaN anti-site were suspected as plausible origin.  相似文献   

12.
This study examined the influence of strain-compensated triple AlGaN/GaN/InGaN superlattice structures (SLs) in n-GaN on the structural, electrical and optical characteristics of LEDs by analyzing the etch pits density (EPD), stress measurement, high-resolution X-ray diffraction (HRXRD), sheet resistance, photoluminescence (PL) and light–current–voltage (LIV). EPD, stress measurement and HRXRD studies showed that the insertion of AlGaN/GaN/InGaN SLs during the growth of n-GaN effectively distributed and compensated for the strong compressive stress, and decreased the dislocation density in n-GaN. The operating voltage at 20 mA for the LEDs grown with SLs decreased to 3.18 V from 3.4 V for the LEDs grown without SLs. In addition, a decrease in the spectral blue shift compared to the LEDs grown without SLs was observed in the LEDs grown with the SLs.  相似文献   

13.
The epitaxial thickening of polycrystalline Si films on glass substrates is of great interest for the realization of crystalline Si thin film solar cells and other large-area thin film devices. In this paper we report on the epitaxial growth of Si at temperatures below on polycrystalline seed layers using electron–cyclotron resonance chemical vapor deposition. The Si seed layers were prepared by aluminum-induced crystallization. The quality of the ECRCVD-grown films strongly depends on the orientation of the underlying seed layer grains. Due to a mainly favorable orientation of the seed layers more than 73% of the substrate area were epitaxially thickened. It turned out that a (1 0 0) preferential orientation is favorable for epitaxial thickening. This, however, is not the only requirement for successful low-temperature epitaxial growth of Si.  相似文献   

14.
We have investigated the unintentional impurities, oxygen and carbon, in GaN films grown on c-plane, r-plane as well as m-plane sapphire by metal-organic chemical vapor deposition. The GaN layer was analyzed by secondary ion mass spectroscopy. The different trend of the incorporation of oxygen and carbon has been explained in the polar (0 0 0 1), nonpolar (1 1 2¯ 0) and semipolar (1 1 2¯ 2) GaN by a combination of the atom bonding structure and the origin direction of the impurities. Furthermore, it has been found that there is a stronger yellow luminescence (YL) in GaN with higher concentration of carbon, suggesting that C-involved defects are originally responsible for the YL.  相似文献   

15.
The effects of the reaction temperature in the first stage TI on the formation and the luminescent property of both the seed and the grown particles were investigated in the region from 1050 to 1200 °C for the two-stage vapor-phase synthesis of GaN particles. The reaction efficiency of vaporized Ga and NH3 to form the seed particles increased with increasing TI up to about 1150 °C, where the maximum value of about 70% was obtained. Further raising TI caused a decrease of the efficiency. The X-ray diffraction and the photoluminescence (PL) measurements indicated both of the crystal quality and the luminescent property of the seed particle were improved with increasing TI. On the other hand, the PL intensity of the particles grown on the seed in the second stage decreased with increasing TI. This difference in the dependence was explained in terms of the morphology of the grown particles. The mechanism of particle formation during these processes was also discussed based on the results.  相似文献   

16.
17.
InP layers were grown by chemical beam epitaxy (CBE) using high purity thermally precracked tertiarybutylphosphine (TBP) and trimethylindium (TMI) as the source of the group III element. For optimized substrate temperature and V/III ratio, InP films of good electrical and optical quality have been obtained; the n-type background carrier concentration is (1–2) × 1015 cm-3, with a Hall mobility at 77 K being μ77 = 45,000 cm2 V-1 s-1. Given the low value of the V/III ratio, and according to mass spectrosc measurements, the phosphorus species giving rise to epitaxy is expected to be the dimer P2. The TBP consumption in CBE is very low when compared to organometallic vapour phase epitaxy (OMVPE), typicaly below 0.25 g/μm of InP layer.  相似文献   

18.
We report on the growth of thick GaN epilayers on 4-in. Si(1 1 1) substrates by metalorganic chemical vapor deposition. Using intercalated AlN layers that contribute to counterbalance the tensile strain induced by the thermal mismatch between gallium nitride and the silicon substrate, up to 6.7 μm thick crack-free group III-nitride layers have been grown. Root mean-squares surface roughness of 0.5 nm, threading dislocation densities of 1.1×109 cm?2, as well as X-ray diffraction (XRD) full widths at half-maximum (FWHM) of 406 arcsec for the GaN(0 0 2) and of 1148 arcsec for the GaN(3 0 2) reflection have been measured. The donor bound exciton has a low-temperature photoluminescence line width of 12 meV. The correlation between the threading dislocation density and XRD FWHM, as well as the correlation between the wafer curvature and the GaN in-plane stress is discussed. An increase of the tensile stress is observed upon n-type doping of GaN by silicon.  相似文献   

19.
Gallium nitride (GaN) nanospindles have been synthesized via a solid-state reaction at a low-temperature condition. X-ray powder diffraction (XRD), Raman spectrum and high-resolution transmission electron microscopy (HRTEM) revealed that the synthesized GaN crystallized in a hexagonal structure and displaying spindly particles morphology has an average diameter of 100 nm and length of 400 nm X-ray photoelectron spectroscopy (XPS) of the sample gave the atomic ratio of Ga and N of 1.04:1. Room-temperature photoluminescence (PL) spectrum showed that the as-prepared product had a peak emission at 372 nm. The possible formation mechanism of the wurtzite GaN is briefly discussed.  相似文献   

20.
The many complex interactions between system variables means that the experimental understanding of the mechanisms of soot generation, transport and deposition in the modified chemical vapor deposition process used to fabricate silica-based optical fibers is limited. This paper presents a computational fluid dynamics study of the process, in which the particle formation zone and flow field are calculated and silica particles are ‘launched’ at the reaction front and tracked until they either deposit on the substrate tube or exit the system. Variables which can affect this process are tube rotation rate, wall temperature profile, inlet feed composition and gas flow rate. It is shown that buoyancy alone and a combination of buoyancy and tube rotation are ‘symmetry breakers’ in terms of particle generation-deposition and that the most important factors affecting deposition are the gas flow rate and the shape of the wall temperature profile. This sensitivity arises from the competing forces of fluid drag and thermophoresis acting on the particles. It is suggested that altering the wall temperature profile by use of different size burners or changing the substrate tube cooling conditions could achieve significantly different soot deposition layer quality, which would be reflected in the final optical fiber performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号