首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the concept of hypo-elasticity is generalized to the micropolar continuum theory, and the general forms of the constitutive equations of the micropolar hypo-elastic materials are presented. A new co-rotational objective rate whose spin is the micropolar gyration tensor is introduced which describes the deformation of the material in view of an observer attached to the micro-structure. As special case, simplified versions of the proposed constitutive equations are given in which the same fourth-order elasticity tensors are used as in the micropolar linear elasticity. A 2-D finite element formulation for large elastic deformation of micropolar hypo-elastic media based on the simplified constitutive equations in conjunction with Jaumann and gyration rates is presented. As an example, buckling of a shallow arc is examined, and it is shown that an increase in the micropolar material parameters results in an increase in the buckling load of the arc. Also, it is shown that micropolar effects become important for deformations taking place at small scales.  相似文献   

2.
A mixture theory is developed for multi-component micropolar porous media with a combination of the hybrid mixture theory and the micropolar continuum theory. The system is modeled as multi-component micropolar elastic solids saturated with multi- component micropolar viscous fluids. Balance equations are given through the mixture theory. Constitutive equations are developed based on the second law of thermodynamics and constitutive assumptions. Taking account of compressibility of solid phases, the volume fraction of fluid as an independent state variable is introduced in the free energy function, and the dynamic compatibility condition is obtained to restrict the change of pressure difference on the solid-fluid interface. The constructed constitutive equations are used to close the field equations. The linear field equations are obtained using a linearization procedure, and the micropolar thermo-hydro-mechanical component transport model is established. This model can be applied to practical problems, such as contaminant, drug, and pesticide transport. When the proposed model is supposed to be porous media, and both fluid and solid are single-component, it will almost agree with Eringen's model.  相似文献   

3.
A nonlinear theory of continuously distributed dislocation and disclination type defects in elastic media with intrinsic rotational degrees of freedom and couple stresses is proposed. The mediumstrains are assumed to be finite. The solving equations of the continuum theory of defects are obtained by passing to the limit from a discrete set of isolated dislocations and disclinations to their continuous distribution. The notions of dislocation and disclination densities in a micropolar body under large deformations are introduced. Incompatibility equations are obtained and a boundaryvalue problem of equilibriumis posed for an elastic micropolar body with a given density of distributed defects. A nonlinear problem of determining the intrinsic stresses in a hollow circular cylinder due to a given distribution of disclinations is solved.  相似文献   

4.
Summary Chaotic vibrations of deterministic, geometrically nonlinear, elastic, spherical and conical axially summetric shells, subject to sign-changing transversal load using the variational principle, are analysed. The paper is motivated by an observation that variational equations of the hybrid type are suitableto solve many dynamical problems of the shells theory. It is assumed that the shell material is isotropic, and the Hook's principle holds. Intertial forces in directions tangent to mean shell surface and rotation inertia of a normal shell cross section are neglected. A transition form PDEs to ODEs (the Cauchy problem) is realized through the Ritz procedure. Next, the Cauchy problem is solved using the fourth-order Runge-Kutta method. Qualitative and quantitative analysis is carried out in the frame of both nonlinear dynamics and quantitative theory of differential equations. New scenarios from harmonic to chaotic dynamics are detected. Various vibration forms development versus control parameters (rise of arc; amplitude and frequency of the exciting force and number of vibrational modes accounted) are illustrated and discussed.  相似文献   

5.
In the framework of the classical field theory and using the theory of action variational symmetries, we consider the construction of canonical energy-momentum tensors for a coupled micropolar thermoelastic field taking account of the nonlocality of the Lagrangian density, which is typical of continuum micromechanics. We use the algorithms of group analysis to calculate the Noether currents and the energy-momentum tensors in three cases where the Lagrangian depends on the gradients of field variables of orders not exceeding 1, 2, and 3. In each of these cases, we present explicit formulas for the components of the canonical energy-momentum tensor. We construct the energy-momentum tensor for micropolar thermoelastic bodies in which the heat conduction process is characterized by a generalized heat equation of hyperbolic analytical type. In the equations of micropolar thermoelastic field, all possible restrictions on the microrotations are taken into account.  相似文献   

6.
将周期性蜂窝材料等效为具有非局部本构的微极连续介质,以解释实验中出现的尺度效应和边界层效应.在评论相关的多种不同方法(能量法、体积平均的均匀化法等)之后,提出了一种基于位移连续和单胞力平衡的推导微极等效本构参数的新方法.以正方形单胞制成的结构为例,在不同的结构与单胞尺寸比下,考虑承受集中点载荷、均布轴力和均布剪力三种载荷工况,比较了离散完全计算、经典连续介质等效和不同微极连续体等效本构的计算结果,建议了较好的微极本构参数值.数值模拟表明,集中点载荷和剪切载荷作用时,在加载点附近和边界部分,微极等效可以显著提高计算精度.最后,给出了一种映射算法,可以根据微极等效连续体分析的结果,快速计算出对应微观单胞构件的应力,以开有圆孔的方板应力集中为例,验证并考察了所提快速算法的有效性和计算精度.  相似文献   

7.
The equations of nonaxisymmetric vibrations of discretely reinforced multilayer cylindrical shells are analyzed. A refined Timoshenko model of shells and beams is used to analyze elements of an elastic structure. The vibration equations for an inhomogeneous elastic system are derived using the Reissner variational principle. The numerical solver of the dynamic equations is based on the integro-interpolation method used to construct finite-difference schemes for equations with discontinuous coefficients. The dynamic behavior of a five-layer cylindrical shell under distributed nonstationary loading is analyzed  相似文献   

8.
This paper presents a general nonlinear theory of elastic shells for large deflections and finite strains in reference to a certain natural state. By expanding the displacement components into power series in the coordinate θ3 normal to the undeformed middle surface of shells, the expansions of the Cauchy-Green strain tensors are expressed in terms of these expanded displacement components. Through the modified Hellinger-Reissner variational principle for a three-dimensional elastic continuum, a set of the fundamental shell equations is derived in terms of the expanded Cauchy-Green strain tensors and Kirchhoff stress resultants. The Love-Kirchhoff hypothesis is not assumed and higher order stretching and bending are taken into consideration. For elastic shells of isotropic materials, assuming the strain-energy to be an analytic function of the strain measures, general nonlinear constitutive equations are then derived. Thus, a complete and consistent two-dimensional shell theory incorporating the geometrical and physical nonlinearities is established. The classical theories of shells are directly derivable from the present results by proper truncations of the series.  相似文献   

9.
In this paper the definition of micropolar protoclastic material bodies is given and with the help of the principle of virtual power, the variational principle of those bodies is derived. In terms of that same idea and the definition of micropolar protopotential presented here, the constitutive equations for nonlocal micropolar elastic continua are naturally derived.  相似文献   

10.
We propose a linear surface/interface model for plane deformations of a micropolar elastic solid based on a higher-order surface elasticity theory capable of incorporating bending and twisting effects. The surface/interface is modeled as a bending-resistant Kirchhoff micropolar thin shell perfectly bonded to the boundary of the solid. It is anticipated that by combining micropolar bulk and surface effects in this way, the enhanced model will most accurately capture the essential characteristics (in particular, size dependency) required in the modeling of materials with significant microstructure as well as in the modeling of classes of nanomaterials. The corresponding boundary value problems are particularly interesting in that they involve boundary conditions of order higher than that of the governing field equations. We illustrate our theory by analyzing the simple problem of a circular hole in a micropolar sheet noting, in particular, the extent to which surface effects and micropolar properties each contribute to the deformation of the sheet.  相似文献   

11.
In this paper, a linear theory for the analysis of beams based on the micropolar continuum mechanics is developed. Power series expansions for the axial displacement and micro-rotation fields are assumed. The governing equations are derived by integrating the momentum and moment of momentum equations in the micropolar continuum theory. Body couples and couple stresses can be supported in this theory. After some simplifications, this theory can be reduced to the well-known Timoshenko and Euler–Bernoulli beam theories. The nature of flexural and longitudinal waves in the infinite length micropolar beam has been investigated. This theory predicts the existence of micro-rotational waves which are not present in any of the known beam theories based on the classical continuum mechanics. Also, the deformation of a cantilever beam with transverse concentrated tip loading has been studied. The pattern of deflection of the beam is similar to the classical beam theories, but couple stress and micro-rotation show an oscillatory behavior along the beam for various loadings.  相似文献   

12.
In this paper, the concept of hyper-elasticity in the micropolar continuum theory is investigated. The restrictions on the fourth-order elasticity tensors are investigated. Using the representation theorems, a general form of constitutive equations for micropolar hyper-elastic isotropic materials is presented. As some special cases, generalizations of the neo-Hookean and Mooney-Rivlin type materials to the micropolar continuum theory are presented. The generalized constitutive equations reduce to those of the microplar linear elasticity theory when the deformations are infinitesimal. Also, Updated Lagrangian finite element formulations for the micropolar hyper-elastic materials are presented. Considering two planar examples, it is shown that an increase in the micropolar parameter results in the reduction of the deformation of the bodies. Also, it is shown that for a specimen with very small dimensions, e.g. in the micron level, the micropolar effects are more sensible. Furthermore, it is shown that the influence of the micropolar parameters is dependent not only on the size of the body, but also to its geometry and loading conditions. For the problems in which the deformation is very close to a homogeneous state, the micropolar effects are negligible.  相似文献   

13.
Recently one has often been speaking of problems with couple stresses. The theory in which such problems are considered is sometimes called micropolar, or the theory of Cosserat continuum [1]. In the case of elastic medium, such a theory is considered in [2].  相似文献   

14.
A generalized continuum representation of two-dimensional periodic cellular solids is obtained by treating these materials as micropolar continua. Linear elastic micropolar constants are obtained using an energy approach for square, equilateral triangular, mixed triangle and diamond cell topologies. The constants are obtained by equating two different continuous approximations of the strain energy function. Furthermore, the effects of shear deformation of the cell walls on the micropolar elastic constants are also discussed. A continuum micropolar finite element approach is developed for numerical simulations of the cell structures. The solutions from the continuum representation are compared with the “exact” discrete simulations of these cell structures for a model problem of elastic indentation of a rectangular domain by a point force. The utility of the micropolar continuum representation is illustrated by comparing various cell structures with respect to the stress concentration factor at the root of a circular notch.  相似文献   

15.
本文研究了考虑横向剪切影响的弹性厚壁圆柱壳的静力问题。利用变分原理得到平衡微分方程组和相应的边界条件。将平衡方程组归并成一个高阶微分方程,用数值法求出它的特征根,得到问题的解。  相似文献   

16.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

17.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

18.
The fundamental equations of elasticity with extensions to electromagnetic effects are expressed in differential form for a regular region of materials, and the uniqueness of solutions is examined. Alternatively, the fundamental equations are stated as the Euler–Lagrange equations of a unified variational principle, which operates on all the field variables. The variational principle is deduced from a general principle of physics by modifying it through an involutory transformation. Then, a system of two-dimensional shear deformation equations is derived in differential and fully variational forms for the high frequency waves and vibrations of a functionally graded shell. Also, a theorem is given, which states the conditions sufficient for the uniqueness in solutions of the shell equations. On the basis of a discrete layer modeling, the governing equations are obtained for the motions of a curved laminae made of any numbers of functionally graded distinct layers, whenever the displacements and the electric and magnetic potentials of a layer are taken to vary linearly across its thickness. The resulting equations in differential and fully variational, invariant forms account for various types of waves and coupled vibrations of one and two dimensional structural elements as well. The invariant form makes it possible to express the equations in a particular coordinate system most suitable to the geometry of shell (plate) or laminae. The results are shown to be compatible with and to recover some of earlier equations of plane and curved elements for special material, geometry and/or effects.  相似文献   

19.
本文分析了各向同性封闭圆柱壳的非线性自由振动。文中采用经典的非线性弹性力学方法推导了圆柱壳的大振幅运动方程,这些方程的静态形式与冯·卡门的板理论方程具有同样的精度。文中讨论了四种基本振动模态,并且还以数学公式的形式给出了一般的最终结果,一些例子以曲线给出结果,并进行了比较。结果还表明线性振动可以作为非线性振动的一种特例。  相似文献   

20.
IntroductionThispaperisadirectcontinuationofRef.[1 ] .InitthecoupledconservationlawofenergypresentedinRef.[2 ]wasextendedandtherathercompletesystemsofbasicbalancelawsandequationsformicropolarcontinuumtheoryhavebeenconstitutedbycombiningtherenewedresultsandthetraditionalconservationlawsofmassandmicroinertiaandtheentropyinequality .Thepurposeofthispaperistorestablishthesystemsofbasicbalancelawsandequationsformicromorphiccontinuumtheoryandcouplestresstheoryviadirecttransitionsandreductionsfromth…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号