首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-uniqueness, bifurcation and stability of homogeneous solutions to the equilibrium problem of a hyperelastic cube subject to equitriaxial dead-load tractions are investigated. Besides the basic and theoretical questions raised by the analysis, the study is motivated by the somewhat surprising feature of this nonlinear problem for which the symmetric load may give rise to asymmetric stable deformations. In reality, the equilibrium problem, formulated for general homogeneous compressible isotropic materials with polyconvex energy function, may exhibit primary and secondary bifurcations. A primary bifurcation occurs when there exist paths of equilibrium states that bifurcate from the primary path of three equal principal stretches. These bifurcation branches have two coinciding stretches and along them, through secondary bifurcations, other completely asymmetric bifurcation branches, which are characterized by all three stretches different, may risen. In this case, the cube transforms into an oblique parallelepiped. With increasing loads, they are also possible discontinuous paths of equilibria which evince prompt jumps in the deformation process. Of course, the set of asymmetric solutions admitted by the equilibrium problem depends on the specific form of the stored energy function adopted. In this paper, expressions governing the global development of asymmetric equilibrium branches are derived. In particular, conditions to have bifurcation points are individualized. For compressible neo-Hookean and Mooney-Rivlin materials a wide parametric analysis is carried out showing by means of graphs the most interesting branches. Finally, using the energy criterion, a detailed study is performed to assess the stability of the computed solutions.   相似文献   

2.
According to the linear theory of vibration for spinning disks, the backward traveling waves of some of the modes may have zero natural frequency at what are called the critical speeds. At these speeds, the linear equations of motion cannot properly predict the amplitude response of the spinning disk, and nonlinear equations of motion must be used. In this paper, geometrical nonlinear equations of motion based on Von Karman plate theory are employed to study the dynamics of an elastically constrained disk near its critical speeds. A one-mode approximation is used to examine the effect of elastic constraint on the amplitude response. Presenting the equations in a space-fixed coordinate system, this study aims to find closed-form solutions for some of the equilibrium configurations of an elastically constrained spinning disk. Also, the stability of these configurations is studied using analytical techniques. It is shown that below the critical speed, one neutrally stable equilibrium solution exists, while above it, a bifurcation occurs. In this situation, two more branches of equilibrium configurations emerge, one of which is neutrally stable and the other unstable. Closed-form expressions for the bifurcation points are obtained. Due to the effect of an elastic constraint, a bifurcation occurs and the previously neutrally stable equilibrium configuration turns unstable. Also at this bifurcation point, two more branches of equilibrium solutions emerge.  相似文献   

3.
The bifurcations and chaotic dynamics of parametrically and externally excited suspended cables are investigated in this paper. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The Galerkin procedure is introduced to simplify the governing equations of motion to ordinary differential equations with two-degree-of-freedom. The case of one-to-one internal resonance between the modes of suspended cables, primary resonant excitation, and principal parametric excitation of suspended cables is considered. Using the method of multiple scales, a parametrically and externally excited system is transformed to the averaged equations. A pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, and Hopf bifurcations. A detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Five branches of dynamic solutions are found. Three of these branches that emerge from two Hopf bifurcations and the other two are isolated. The two Hopf bifurcation points, one is supercritical Hopf bifurcation point and another is primary Hopf bifurcation point. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging, boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, homoclinic explosions and hyperchaos are also observed.  相似文献   

4.
This paper presents a theoretical analysis for the long-term non-linear elastic in-plane behaviour and buckling of shallow concrete-filled steel tubular (CFST) arches. It is known that an elastic shallow arch does not buckle under a load that is lower than the critical loads for its bifurcation or limit point buckling because its buckling equilibrium configuration cannot be achieved, and the arch is in a stable equilibrium state although its structural response may be quite non-linear under the load. However, for a CFST arch under a sustained load, the visco-elastic effects of creep and shrinkage of the concrete core produce significant long-term increases in the deformations and bending moments and subsequently lead to a time-dependent change of its equilibrium configuration. Accordingly, the bifurcation point and limit point of the time-dependent equilibrium path and the corresponding buckling loads of CFST arches also change with time. When the changing time-dependent bifurcation or limit point buckling load of a CFST arch becomes equal to the sustained load, the arch may buckle in a bifurcation mode or in a limit point mode in the time domain. A virtual work method is used in the paper to investigate bifurcation and limit point buckling of shallow circular CFST arches that are subjected to a sustained uniform radial load. The algebraically tractable age-adjusted effective modulus method is used to model the time-dependent behaviour of the concrete core, based on which solutions for the prebuckling structural life time corresponding to non-linear bifurcation and limit point buckling are derived.  相似文献   

5.
This paper presents a detailed analysis on the dynamics of a delayed oscillator with negative damping and delayed feedback control. Firstly, a linear stability analysis for the trivial equilibrium is given. Then, the direction of Hopf bifurcation and stability of periodic solutions bifurcating from trivial equilibrium are determined by using the normal form theory and center manifold theorem. It shows that with properly chosen delay and gain in the delayed feedback path, this controlled delayed system may have stable equilibrium, or periodic solutions, or quasi-periodic solutions, or coexisting stable solutions. In addition, the controlled system may exhibit period-doubling bifurcation which eventually leads to chaos. Finally, some new interesting phenomena, such as the coexistence of periodic orbits and chaotic attractors, have been observed. The results indicate that delayed feedback control can make systems with state delay produce more complicated dynamics.  相似文献   

6.
Finite homogeneous deformations of hyperelastic cylindrical bodies subjected to in-plane equibiaxial dead-load tractions are analyzed. Four basic equilibrium problems are formulated considering incompressible and compressible isotropic bodies under plane stress and plane deformation condition. Depending on the form of the stored energy function, these plane problems, in addition to the obvious symmetric solutions, may admit asymmetric solutions. In other words, the body may assume an equilibrium configuration characterized by two unequal in-plane principal stretches corresponding to equal external forces. In this paper, a mathematical condition, in terms of the principal invariants, governing the global development of the asymmetric deformation branches is obtained and examined in detail with regard to different choices of the stored energy function. Moreover, explicit expressions for evaluating critical loads and bifurcation points are derived. With reference to neo-Hookean, Mooney-Rivlin and Ogden-Ball materials, a broad numerical analysis is performed and the qualitatively more interesting asymmetric equilibrium branches are shown. Finally, using the energy criterion, a number of considerations are put forward about the stability of the computed solutions.  相似文献   

7.
With the secondary bifurcation and the local post-secondary buckling behavior being analyzed in Part I, Part II of this study consists of developing an adaptive non-stationary load sweeping algorithm to investigate post-buckling dynamics and mode jumping phenomena of generally (mechanically and thermally) loaded thin plates in a global context. The non-stationary sweeping procedure has the merits of adapting large load steps to capture static characteristics of stable equilibrium paths both before and after mode jumping and reduce automatically the step size to ensure a dynamic transition between the two stable branches. Thus, it is computationally effective. Furthermore, by adopting the non-stationary sweeping scheme, this procedure can avoid spurious convergence of the transient response to an unstable equilibrium.Corresponding to different post-secondary bifurcation forms, which are determined using asymptotical finite element analysis developed in Part I, subsequent buckling patterns of various complexity occurring after mode jumping are obtained using the method developed in this article. Qualitative changes in post-buckled patterns are observed after the occurrence of the secondary bifurcation or the mode jumping. Free vibration analysis using the tangent stiffness matrix obtained from the converged static or dynamic solutions shows a vibration modal shifting phenomena occurs during the process of the load sweep. The spurious convergence phenomenon caused by the application of the traditional hybrid static–dynamic method is found and explained.  相似文献   

8.
A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency. By regarding the exciting term as a slow-varying parameter, a generalized autonomous fast subsystem can be defined, the equilibrium branches as well as the bifurcations of which can be employed to account for the mechanism of the bursting oscillations by combining the transformed phase portrait introduced. As an example, a typical periodically excited Hartley model is used to demonstrate the validness of the method, in which the exciting frequency is far less than the natural frequency. The equilibrium branches and their bifurcations of the fast subsystem with the variation of the slow-varying parameter are presented. Bursting oscillations for two typical cases are considered, which reveals that, fold bifurcation may cause the the trajectory to jump between different equilibrium branches, while Hopf bifurcation may cause the trajectory to oscillate around the stable limit cycle.  相似文献   

9.
Classical buckling theory is mostly used to investigate the in-plane stability of arches, which assumes that the pre-buckling behaviour is linear and that the effects of pre-buckling deformations on buckling can be ignored. However, the behaviour of shallow arches becomes non-linear and the deformations are substantial prior to buckling, so that their effects on the buckling of shallow arches need to be considered. Classical buckling theory which does not consider these effects cannot correctly predict the in-plane buckling load of shallow arches. This paper investigates the in-plane buckling of circular arches with an arbitrary cross-section and subjected to a radial load uniformly distributed around the arch axis. An energy method is used to establish both non-linear equilibrium equations and buckling equilibrium equations for shallow arches. Analytical solutions for the in-plane buckling loads of shallow arches subjected to this loading regime are obtained. Approximations to the symmetric buckling of shallow arches and formulae for the in-plane anti-symmetric bifurcation buckling load of non-shallow arches are proposed, and criteria that define shallow and non-shallow arches are also stated. Comparisons with finite element results demonstrate that the solutions and indeed approximations are accurate, and that classical buckling theory can correctly predict the in-plane anti-symmetric bifurcation buckling load of non-shallow arches, but overestimates the in-plane anti-symmetric bifurcation buckling load of shallow arches significantly.  相似文献   

10.
Three-to-One Internal Resonances in Hinged-Clamped Beams   总被引:7,自引:0,他引:7  
Chin  Char-Ming  Nayfeh  Ali H. 《Nonlinear dynamics》1997,12(2):129-154
The nonlinear planar response of a hinged-clamped beam to a primary excitation of either its first mode or its second mode is investigated. The analysis accounts for mid-plane stretching, a static axial load and a restraining spring at one end, and modal damping. For a range of axial loads, the second natural frequency is approximately three times the first natural frequency and hence the first and second modes may interact due to a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear partial-differential equation and derive two sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the case of primary resonance of either the first or the second mode. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of primary resonance of the first mode, only two-mode solutions are possible, whereas for the case of primary resonance of the second mode, single- and two-mode solutions are possible. The two-mode equilibrium solutions of the modulation equations may undergo a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. A shooting technique is used to calculate limit cycles of the modulation equations and Floquet theory is used to ascertain their stability. The limit cycles correspond to periodically modulated motions of the beam. The limit cycles are found to undergo cyclic-fold bifurcations and period-doubling bifurcations, leading to chaos. The chaotic attractors may undergo boundary crises, resulting in the destruction of the chaotic attractors and their basins of attraction.  相似文献   

11.
This paper is concerned with an analytical study of the non-linear elastic in-plane behaviour and buckling of pinned–fixed shallow circular arches that are subjected to a central concentrated radial load. Because the boundary conditions provided by the pinned support and fixed support of a pinned–fixed arch are quite different from those of a pinned–pinned or a fixed–fixed arch, the non-linear behaviour of a pinned–fixed arch is more complicated than that of its pinned–pinned or fixed–fixed counterpart. Analytical solutions for the non-linear equilibrium path for shallow pinned–fixed circular arches are derived. The non-linear equilibrium path for a pinned–fixed arch may have one or three unstable equilibrium paths and may include two or four limit points. This is different from pinned–pinned and fixed–fixed arches that have only two limit points. The number of limit points in the non-linear equilibrium path of a pinned–fixed arch depends on the slenderness and the included angle of the arch. The switches in terms of an arch geometry parameter, which is introduced in the paper, are derived for distinguishing between arches with two limit points and those with four limit points and for distinguishing between a pinned–fixed arch and a beam curved in-elevation. It is also shown that a pinned–fixed arch under a central concentrated load can buckle in a limit point mode, but cannot buckle in a bifurcation mode. This contrasts with the buckling behaviour of pinned–pinned or fixed–fixed arches under a central concentrated load, which may buckle both in a bifurcation mode and in a limit point mode. An analytical solution for the limit point buckling load of shallow pinned–fixed circular arches is also derived. Comparisons with finite element results show that the analytical solutions can accurately predict the non-linear buckling and postbuckling behaviour of shallow pinned–fixed arches. Although the solutions are derived for shallow pinned–fixed arches, comparisons with the finite element results demonstrate that they can also provide reasonable predictions for the buckling load of deep pinned–fixed arches under a central concentrated load.  相似文献   

12.
This paper reports the results of numerical analysis of the bifurcation solutions of nonlinear boundary-value problems of plane bending of elastic arches and panels. Problems are formulated for a system of six nonlinear ordinary differential equations of the first order with independent fields of finite displacements and rotations. Two loading versions (by follower and conservative pressures) and two versions of boundary conditions (rigid clamping and pinning) are considered. In the case of clamped arches and panels, the set of solutions consists of symmetric and asymmetric bending modes which exist only for positive values of the load parameter. In the case of pinning, the set of solutions includes symmetric and asymmetrical modes which correspond to positive, negative, and zero values of the parameter. In both problems, the phase relations between the state parameter and the load parameter are bifurcated, ambiguous, have isolated branches, and admit a catastrophe — a finite jump from the fundamental equilibrium mode to a buckled mode.  相似文献   

13.
The relationship of the adjacent equilibrium method, the regular perturbation method and the energy method for neutral equilibrium is studied. It is shown that unlike the adjacent equilibrium method, the regular perturbation method yields, for the problems under consideration, non-homogeneous perturbation equations and that adjacent states of equilibrium do not exist at the bifurcation point. These results are then compared with the result of the energy criterion for neutral equilibrium V2[u] = 0. It is found that although the physical arguments are different in the three methods, the resulting stability equations are identical; thus showing why the adjacent equilibrium argument, even for cases when it is incorrect, yields correct critical loads. This is followed by a discussion of an incorrect derivation of a stability condition and a notion about a load type introduced in the stability literature, which are consequences of the assumption of the general existence of adjacent equilibrium states at bifurcation points.  相似文献   

14.
弹性地基上HDAJ接头桩的非线性稳定性分析   总被引:1,自引:1,他引:0  
本文采用弧坐标首先建立了弹性地基中受轴向载荷作用的高柔性抗震拼接头桩(High Ductility Aseis-matic Joint Spliced Pile)的非线性数学模型,并假定土(基础)对桩基的反作用力服从Winkler模型;在此基础上对该模型进行了线性化,并得到HDAJ接头桩的临界载荷。最后根据分叉理论的观点和方法,讨论了HDAJ接头桩在临界载荷处的稳定性问题。研究结果表明HDAJ接头桩在临界载荷附近必发生分叉,且分叉解是唯一的,稳定的,并且给出了分叉解的渐近表达式。物理上,这表示HDAJ接头桩的平衡构形在临界载荷处必然发生改变,并且从一个稳定的平衡构形变化到另一个稳定的平衡构形。同时考察了土的液化对临界载荷的影响,说明液化的影响是非常明显的。当考虑土的液化时,桩基的临界载荷低于不考虑土的液化时桩基的临界载荷。  相似文献   

15.
A mathematical formulation of column optimization problems allowing for bimodal optimum buckling loads is developed in this paper. The columns are continuous and linearly elastic, and assumed to have no geometrical imperfections. It is first shown that bimodal solutions exist for columns that rest on a linearly elastic (Winkler) foundation and have clamped-clamped and clamped-simply supported ends. The equilibrium equation for a non-extensible, geometrically nonlinear elastic column is then derived, and the initial post-buckling behaviour of a bimodal optimum column near the bifurcation point is studied using a perturbation method. It is shown that in the general case the post-buckling behaviour is governed by a fourth order polynomial equation, i.e., near the bifurcation point there may be up to four post-buckling equilibrium states emanating from the trivial equilibrium state. Each of these equilibrium states may be either supercritical or subcritical in the vicinity of the bifurcation point. The conditions for stability of these non-trivial post-buckling states are established based on verification of positive semi-definiteness of a two-by-two matrix whose coefficients are integrals of the buckling modes and their derivatives. In the end of the paper we present and discuss numerical results for the post-buckling behaviour of several columns with bimodal optimum buckling loads.  相似文献   

16.
Spatiotemporal structures arising in two identical cells,which are governed by higher autocatalator kinetics and coupled via diffusive interchange of autocatalyst, are discussed.The stability of the unique homogeneous steady state is obtained by the linearized theory.A necessary condition for bifurcations in spatially non-uniform solutions in uncoupled and coupled systems is given.Further information about Turing pattern solutions near bifurcation points is obtained by weakly nonlinear theory.Finally,the stability of equilibrium points of the amplitude equation is discussed by weakly nonlinear theory,with the bifurcation branches of the weakly coupled system.  相似文献   

17.
双频1:2激励下修正蔡氏振子两尺度耦合行为   总被引:5,自引:4,他引:1  
夏雨  毕勤胜  罗超  张晓芳 《力学学报》2018,50(2):362-372
不同尺度耦合系统存在的复杂振荡及其分岔机理一直是当前国内外研究的热点课题之一. 目前相关工作大都是针对单频周期激励频域两尺度系统,而对于含有两个或两个以上周期激励系统尺度效应的研究则相对较少. 为深入揭示多频激励系统的不同尺度效应,本文以修正的四维蔡氏电路为例,通过引入两个频率不同的周期电流源,建立了双频1:2周期激励两尺度动力学模型. 当两激励频率之间存在严格共振关系,且周期激励频率远小于系统的固有频率时,可以将两周期激励项转换为单一周期激励项的函数形式. 将该单一周期激励项视为慢变参数,给出了不同激励幅值下快子系统随慢变参数变化的平衡曲线及其分岔行为的演化过程,重点考察了3种较为典型的不同外激励幅值下系统的簇发振荡行为. 结合转换相图,揭示了各种簇发振荡的产生机理. 系统的轨线会随慢变参数的变化,沿相应的稳定平衡曲线运动,而fold分岔会导致轨迹在不同稳定平衡曲线上的跳跃,产生相应的激发态. 激发态可以用从分岔点向相应稳定平衡曲线的暂态过程来近似,其振荡幅值的变化和振荡频率也可用相应平衡点特征值的实部和虚部来描述,并进一步指出随着外激励幅值的改变,导致系统参与簇发振荡的平衡曲线分岔点越多,其相应簇发振荡吸引子的结构也越复杂.   相似文献   

18.
This paper investigates the Hopf bifurcation of a four-dimensional hyperchaotic system with only one equilibrium. A detailed set of conditions is derived which guarantees the existence of the Hopf bifurcation. Furthermore, the standard normal form theory is applied to determine the direction and type of the Hopf bifurcation, and the approximate expressions of bifurcating periodic solutions and their periods. In addition, numerical simulations are used to justify theoretical results.  相似文献   

19.
We study the radial movement of an incompressible fluid located in a Hele–Shaw cell rotating at a constant angular velocity in the horizontal plane. Within an analytic framework, local existence and uniqueness of solutions is proved, and it is shown that the unique rotationally invariant equilibrium of the flow is unstable. There are, however, other time-independent solutions: using surface tension as a bifurcation parameter we establish the existence of global bifurcation branches consisting of stationary fingering patterns. The same results can be obtained by fixing the surface tension while varying the angular velocity. Finally, it is shown that the equilibria on a global bifurcation branch converge to a circle as the surface tension tends to infinity, provided they stay suitably bounded.  相似文献   

20.
Simulation codes for solving large systems of ordinary differential equations suffer from the disadvantage that bifurcation‐theoretic results about the underlying dynamical system cannot be obtained from them easily, if at all. Bifurcation behaviour typically can be inferred only after significant computational effort, and even then the exact location and nature of the bifurcation cannot always be determined definitively. By incorporating relatively minor changes to an existing simulation code for the Taylor–Couette problem, specifically, by implementing the Newton–Picard method, we have developed a computational structure that enables us to overcome some of the inherent limitations of the simulation code and begin to perform bifurcation‐theoretic tasks. While a complete bifurcation picture was not developed, three distinct solution branches of the Taylor–Couette problem were analysed. These branches exhibit a wide variety of behaviours, including Hopf bifurcation points, symmetry‐breaking bifurcation points, turning points and bifurcation to motion on a torus. Unstable equilibrium and time‐periodic solutions were also computed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号