首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2007,353(22-23):2289-2294
Different rf-power and chamber pressures have been used to deposit boron doped hydrogenated silicon films by the PECVD method. The optoelectronic and structural properties of the silicon films have been investigated. With the increase of power and pressure the crystallinity of the films increases while the absorption decreases. As a very thin p-layer is needed in p–i–n thin film solar cells the variation of properties with film thickness has been studied. The fraction of crystallinity and thus dark conductivity vary also with the thickness of the film. Conductivity as high as 2.46 S cm−1 has been achieved for 400 Å thin film while for 3000 Å thick film it is 21 S cm−1. Characterization of these films by XRD, Raman Spectroscopy, TEM and SEM indicate that the grain size, crystalline volume fraction as well as the surface morphology of p-layers depend on the deposition conditions as well as on the thickness of the film. Optical band gap varies from 2.19 eV to 2.63 eV. The thin p-type crystalline silicon film with high conductivity and wide band gap prepared under high power and pressure is suitable for application as window layer for Silicon thin film solar cells.  相似文献   

2.
《Journal of Non》2006,352(9-20):1217-1220
We have investigated PECVD-deposited ultrathin intrinsic a-Si:H layers on c-Si substrates using UV-excited photoemission spectroscopy ( = 4–8 eV) and surface photovoltage measurements. For samples deposited at 230 °C, the Urbach energy is minimal, the Fermi level closest to midgap and the interface recombination velocity has a minimum. The a-Si:H/c-Si interface density of states is comparable to that of thermally oxidized silicon interfaces. However, the measured a-Si:H dangling bond densities are generally higher than in thick films and not correlated with the Urbach energy. This is ascribed to additional disorder induced by the proximity of the a-Si:H/c-Si interface and H-rich growth in the film/substrate interface region.  相似文献   

3.
A detailed investigation of the compositional, optical and electrical properties of a chromium silicide layer grown at room temperature on top of doped amorphous silicon films is presented. The formation of the layer is promoted only when phosphorous atoms are present in the film. The deposition of a very thin n-type doped layer (around 5 nm) on top of a p-type doped film has allowed us to achieve the chromium silicide formation also on p-type material without changing its doping properties. Angle resolved X-ray photoelectron spectroscopy measurements demonstrate the presence of chromium-oxide, chromium silicide and metallic chromium in similar percentages for both p- and n-type doped layers. From the ellipsometric analysis, the refractive index spectra have been extracted, and the layer thickness has been estimated to be 5 nm for both p- and n-type doped layers. From planar conductivity measurements, we have found that the chromium silicide promotes an activation energy reduction from 0.24 eV down to 0.017 eV for the n-type layer and from 0.36 eV down to 0.14 eV for the p-type film.  相似文献   

4.
《Journal of Non》2006,352(38-39):4088-4092
In this paper, amorphous ZnO thin films were obtained by direct UV irradiation of β-diketonate Zn(II) precursor complexes spin-coated on Si(1 0 0) and fused silica substrates. ZnO films were characterized by means of XPS, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). These analyses revealed that as-deposited films are amorphous and have a rougher surface than thermally treated films. Optical characterization of the films showed that these are highly transparent in the visible spectrum with an average transmittance of up to 95% over 400 nm, and an optical band-gap energy of 3.21 eV for an as-deposited film, and 3.27 eV for a film annealed at 800 °C. Low resistivity values were obtained for the ZnO films (1.0 × 10−2 Ω cm) as determined by Van der Pauw four-point probe method.  相似文献   

5.
《Journal of Non》2006,352(9-20):1196-1199
Optical absorption coefficient spectra of hydrogenated microcrystalline cubic silicon carbide (μc-3C–SiC:H) films prepared by Hot-Wire CVD method have been estimated for the first time by resonant photothermal bending spectroscopy (resonant-PBS). The optical bandgap energy and its temperature coefficient of μc-3C–SiC:H film is found to be about 2.2 eV and 2.3 × 10−4 eV K−1, respectively. The absorption coefficient spectra of localized states, which are related to grain boundaries, do not change by exposure of air and thermal annealing. The localized state of μc-3C–SiC:H has different properties for impurity incorporation compared with that of hydrogenated microcrystalline silicon (μc-Si:H) film.  相似文献   

6.
A.N. Trukhin  K.M. Golant  J. Teteris 《Journal of Non》2012,358(12-13):1538-1544
Optical absorption and photoluminescence of Ge-doped silica films fabricated by the surface-plasma chemical vapor deposition (SPCVD) are studied in the 2–8 eV spectral band. The deposited on silica substrate films of about 10 μm in thickness are composed as x·GeO2-(1-x)·SiO2 with x ranging from 0.02 to 1. It is found that all as‐deposited films do not luminesce under the excitation by a KrF (5 eV) excimer laser, thus indicating lack of oxygen deficient centers (ODCs) in them. After subsequent fusion of silicon containing (x < 1) films by a scanning focused CO2 laser beam absorption band centered at 5 eV as well as two luminescence bands centered at blue (3.1 eV) and UV (4.3 eV) wavelengths arise, highlighting the formation of the ODCs. The excitation of unfused SPCVD films by an ArF (6.4 eV) excimer laser yields a luminescence spectrum with two bands typical for the ODCs, but with a faster decay kinetics. Intensities of these bands grow up with samples cooling down to a temperature of 80–60 K. Unfused films excited by the ArF laser also demonstrate luminescence due to recombination of a trapped charge resulted from the excitation of localized electron states of the glass network. In the unfused GeO2 film luminescence related to a self-trapped exciton (STE) typical for GeO2 crystals with α-quartz structure is observed. The observed STE luminescence can be indicative of the crystalline fraction availability in the film. Whereas GeO2 crystals are known as not containing twofold coordinated germanium, a polycrystalline inclusion in the SPCVD GeO2 film serves as a factor explaining the absence of any spectroscopic manifestation of this type of defects in it even after fusion. On the other hand, lack of STE luminescence in other unfused films with x < 1 testifies truly amorphous state of the matter in them.  相似文献   

7.
Thin films of tin sulphide (SnS) were deposited on tin oxide conducting glass substrates by thermal evaporation technique. The transmission spectrum of the SnS film in the wavelength range from 300 to 1100 nm has been obtained. X-ray diffraction has been used to determine the structure of the films. The film thickness and refractive index have been estimated from the transmission spectra. The results showed that the refractive index of the SnS thin films is thickness independent in the wavelength range 590  λ  1100 nm and found to be ~ 1.72. This result indicates that the SnS thin films are homogeneous and isotropic. The energy band gaps were found to be between 1.06 and 1.32 eV, which is in good agreement with literature values. The energy dependence of the obtained refractive index is also investigated.  相似文献   

8.
Hydrogenated silicon films ranging from pure amorphous to those containing small crystallites in large crystalline fraction are prepared using the HWCVD technique without using any hydrogen dilution which is supposed to be necessary for the deposition of nanocrystalline Si films. The only parameter that is varied is Silane flow rate. The deposition rate ranges from 6–27 Å/s. The band gap of the films (1.8–2.0 eV) is high compared to the regular films, which is attributed to the improved short and medium range order as well as the presence of low density amorphous tissues in the grain boundary regions. The films show improved stability under long term light exposure due to more ordered structure and presence of hydrogen mostly as strong Si―H bonds.  相似文献   

9.
《Journal of Non》2006,352(52-54):5572-5577
Amorphous indium nitride (a-InN) thin films were deposited onto different substrates at temperatures <325 K using RF magnetron sputtering at a rate 0.3–0.4 Å/s. X-ray diffraction patterns reveal that the films grown on the substrates are amorphous. The optical absorption edge, ‘bandgap’ energy, Eg, of a-InN has been determined by spectroscopic ellipsometry over the energy range 0.88–4.1 eV. The absorption coefficient was obtained by the analysis of the measured ellipsometric spectra with the Tauc–Lorentz model. The Eg was determined using the modified Tauc and Cody extrapolations. The corresponding Tauc and Cody optical bandgaps were found to be 1.75 and 1.72 eV, respectively. These values are in excellent agreement with the values of the bandgap energy obtained as fitting parameters in the Tauc–Lorentz model: 1.72 ± 0.006 eV as well as by using spectrophotometry (1.74 eV) and photoluminescence (1.6 eV). The spectral dependence of the polarized absorptivities was also investigated. We found that there was a higher absorptivity for wavelengths <725 nm. This wavelength, ∼725 nm, therefore indicates that the absorption edge for a-InN is about 1.70 eV. Thus, the average value of the measured optical absorption of a-InN film is approximately 1.68 ± 0.071 eV.  相似文献   

10.
Hot-wire chemical vapor deposition is employed for the deposition of amorphous and microcrystalline silicon layers at substrate temperature kept below 100 °C with the aid of active cooling of the substrate holder. The hydrogen dilution is varied in order to investigate films at the amorphous-to-microcrystalline transition. While the amorphous layers can be produced with a reasonably low defect density as deduced from subgap optical absorption spectra and a good photosensitivity, the microcrystalline layers are of a lesser quality, most probably due to a decrease of crystallinity during the film growth. In the amorphous growth regime, the Urbach energy values decrease with increasing hydrogen dilution, reaching a minimum of 67 meV just before the microcrystalline threshold. By varying the total gas pressure, the growth rate of the films is changed. The lowest deposition rate of this study (0.16 nm/s) produced the amorphous sample with the highest photoresponse (1 × 106).  相似文献   

11.
《Journal of Non》2007,353(22-23):2244-2249
Transparent conductive oxides such as indium tin oxide (ITO) are interesting materials due to their wide-band gaps, high visible light transmittance, high infrared reflectance, high electrical conductivity, hardness and chemical inertness. ITO films were fabricated on soda lime glass substrates by using high-intensity pulsed ion beam (HIPIB) technique. The as-deposited films comprised of partially crystallized In2O3 and after annealing at 500 °C for 1 h the film changed to polycrystalline phase. After annealing carrier concentration and Hall mobility increased while specific resistance and sheet resistance decreased quickly; and this trend was also observed when film thickness increased up to 300 nm for the post-annealed samples. Further increase in thickness of the film changed the electrical properties slightly. Atomic force microscopy (AFM) revealed that roughness decreased after 500 °C annealing for 1 h in air, except for the film of 65 nm thick. The thickness of the film which relates to the carrier concentration and mobility, degree of crystallization, size of the grain, and connections among grains in film are main factors to determine film’s electrical properties.  相似文献   

12.
Optical absorption spectra of a widegap hydrogenated amorphous silicon film have been estimated by resonant photothermal bending spectroscopy. It is found that excess absorption exists over the photon energy region of 1.2–1.6 eV. This excess absorption decreases by light illumination and does not recover through thermal annealing. The decrease in the excess absorption may be due to oxidization of the film by light illumination.  相似文献   

13.
Spin coating technique has been successfully applied to deposit uniform methyl violet 2B (MV2B) thin films. X-ray diffraction and Fourier-transform infrared techniques were used to study the crystal and molecular structure of MV2B. The optical properties of the films have been studied by spectrophotometer measurements of transmittance and reflectance at normal incidence of light in the spectral range of 200–2500 nm. The absorption and refractive indices are independent of the film thickness. The absorption parameters such as molar extinction coefficient, oscillator strength and electric dipole strength have been reported before and after annealing. The type of electronic transition is indirect allowed transition with onset energy gap of 1.82 eV and optical energy gap of 3.65 eV. Annealing temperatures reduce structure disorder, remove trap level, increase values of the onset and optical energy gaps and decrease refractive index. The single oscillator model has been applied for calculating the dispersion parameters. The oscillator energy, the dispersion energy, the high frequency dielectric constant, the lattice dielectric constant and the ratio of free charge carriers' concentration to its effective mass were evaluated before and after annealing. The dielectric properties of the films were also determined.  相似文献   

14.
T. Sameshima  M. Hasumi 《Journal of Non》2012,358(17):2162-2165
We report the rapid thermal crystallization of silicon films using infrared semiconductor laser. Carbon films were used on silicon films to absorb the laser light. Uniform crystalline regions were achieved by a line shape laser beam with a length of 20 μm. Polycrystalline silicon thin film transistors were fabricated in crystallized regions. The effective electron carrier mobility and threshold voltage were achieved to be 130 cm2/Vs and 0.4 V, respectively, when the crystalline volume ratio of the silicon films was 0.95.  相似文献   

15.
The near-surface dielectric function ε(?ω) of hydrogenated amorphous silicon (a-Si:H) films has been derived from X-ray photoelectron energy-loss spectra, over the energy range 0–40 eV. Removal of low lying single-electron excitations is a prerequisite step to proceed to the derivation of the single plasmon energy loss function Im[? 1/ε(?ω)] due to collective electron oscillations. Several methods are compared to separate interband transitions from bulk or surface plasmons excitation. The shape of interband excitation loss in the range 1–10 eV can be described by a Henke function; alternatively, its removal using a sigmoid weighting function is a low-noise and reliable method. After deconvolution of multiple plasmon losses and self-consistent elimination of surface plasmon excitation, the single plasmon loss distribution allows recovery of optical (ellipsometry) data measured in the near-UV to visible range.  相似文献   

16.
《Journal of Non》2006,352(9-20):1204-1208
The aim of this work is to present a spectroscopic ellipsometry study focused on the annealing time effect on nickel metal induced crystallization of amorphous silicon thin films. For this purpose silicon layers with 80 and 125 nm were used on the top of which a 0.5 nm Ni thick layer was deposited. The ellipsometry simulation using a Bruggemann Effective Medium Approximation shows that films with 80 nm reach a crystalline fraction of 72% after 1 h annealing, appearing to be full crystallized after 2 h. No significant structural improvement is detected for longer annealing times. On the 125 nm samples the crystalline volume fraction after 1 h is only around 7%, requiring 5 h to get a similar crystalline fraction than the one achieved with the thinner film. This means that the time required for full crystallization will be strongly determined by the Si layer thickness. Using a new fitting approach the Ni content within the films was also determined by SE and related to the silicon film thickness.  相似文献   

17.
Photoluminescence (PL) was studied in silicon rich oxide (with the atomic percentage ranges of Si from 35% to 75%) thin film samples, fabricated by the plasma assisted CVD technique. A broad PL peak, blue-shifted from the bulk silicon band edge of ~1.1 eV, was observed. In one typical sample, the PL peak intensity shows a non-monotonic temperature dependence. This non-monotonic dependence was also observed in previous work by others and attributed to an energy splitting between the excitonic singlet and triplet levels in silicon nanocrystals, a consequence of quantum confinement effect. Finally, in more than 20 samples under different thermal treatments (with the annealing temperature range from 800 °C to 1100 °C), the wavelength of PL peak was observed to be pinned between ~900 and ~1000 nm, independent of thermal budget. This pinning effect, we believe, is probably due to the formation of oxygen-related interface states.  相似文献   

18.
《Journal of Non》2006,352(9-20):896-900
In this study, employing a high-density, low-temperature SiH4–H2 mixture microwave plasma, we investigate the influence of source gas supply configuration on deposition rate and structural properties of microcrystalline silicon (μc-Si) films, and demonstrate the plasma parameters for fast deposition of highly crystallized μc-Si films with low defect density. A fast deposition rate of 65 Å/s has been achieved for a SiH4 concentration of 67% diluted in H2 with a high Raman crystallinity of Xc > 65% and a low defect density of (1–2) × 1016 cm−3 by adjusting source gas supply configuration and plasma conditions. A sufficient supply of deposition precursors, such as SiH3, as well as atomic hydrogen H on film growing surface is effective for the high-rate synthesis of highly crystallized μc-Si films, for the reduction in defect density, and for the improvement in film homogeneity and compactability. A preliminary result of p–i–n structure μc-Si thin-film solar cells using the resulting μc-Si films as an intrinsic absorption layer is presented.  相似文献   

19.
Hydrogenated amorphous silicon thin films doped with chalcogens (Se or S) were prepared by the decomposition of silane (SiH4) and H2Se/H2S gas mixtures in an RF plasma glow discharge on 7059 corning glass at a substrate temperature 230 °C. The illumination measurements were performed on these samples as a function of doping concentration, temperature and optical density. The activation energy varied with doping concentration and is higher in Se-doped than S-doped a-Si:H thin films due to a low defect density. From intensity versus photoconductivity data, it is observed that the addition of Se and S changes the recombination mechanism from monomolecular at low doping concentration films to bimolecular at higher doping levels. The photosensitivity (σph/σd) of a-Si, Se:H thin films decreases as the gas ratio H2Se/SiH4 increased from 10?4 to 10?1, while the photosensitivity of a-Si, S:H thin films increases as the gas ratio H2S/SiH4 increased from 6.8 × 10?7 to 1.0×10?4.  相似文献   

20.
Fabrizio Messina  Marco Cannas 《Journal of Non》2009,355(18-21):1038-1041
We report a study of the generation of silicon dangling bonds (E′ centers) induced in fused silica by 4.7 eV laser irradiation in the 10 < T < 475 K temperature range, carried out by in situ optical absorption spectroscopy. The generation of the defects, occurring by transformation of pre-existing precursors, results to be a thermally activated process, quenched below 150 K and with a 0.044 eV activation energy. At T > 200 K the induced defects undergo a post-irradiation decay due to their reaction with mobile H2. The interplay between generation and annealing gives rise to a bell-shaped temperature dependence of the concentration of induced E′ centers, peaking at 250 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号