首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diphenyl-o-silaborane ( 1 ) can be obtained by sublimation as colourless crystalline material in a yield of 23%. The disilaborane 1 was characterized by NMR spectroscopy, mass spectrometry and X-ray structure analysis. The neutral closo cluster 1 reacts with [Zr(NMe2)4] or [Ta(NMe2)5] to give the dimethylamide adduct [(Me2N)(PhSi)2B10H10] of the disilaborane.  相似文献   

2.
Concerning the Reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] – Crystal Structure of [C(NMe2)3]2[FeCl4] The title compound forms by the reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] in THF solution. It crystallizes in the space group Pbcn with a = 1 566.6(3); b = 976.4(2); c = 1 580.4(4) pm; Z = 4; R = 3.8%. Each [FeCl4]2? in is surrounded by eight cations. Two cations each are connected with one Cl atom by relatively short H …? Cl contacts leading to a distortion of the tetrahedral geometry of the anion.  相似文献   

3.
4.
Thermal and photochemical interconversion occurs between the isomeric pair of tetrathiotungstate [WS4]2− clusters 1 and 2 , which were formed by thermolysis of [Cp*2Ru2S4] and [W(CO)3(MeCN)3] [Eq. (1)] and then structurally characterized. During synthesis, a dramatic redistribution of ligands between the Ru and W atoms takes place without the loss of any CO and S ligands.  相似文献   

5.
Treatment of [Cp*Mo(NO)Cl(mu-Cl)](2) with magnesium (Me(2)Mg.dioxane, MeMgCl) or aluminum (Me(3)Al) methylating reagents affords the known compound [Cp*Mo(NO)Me(mu-Cl)](2) (1). Similar treatment of the dichloro precursor with MeLi in ethereal solvents generates an equimolar mixture of 1 and the trimethyl "ate" complex, Cp*MoMe(3)(NO-Li(OEt(2)(n)), (2-Et(2)O). Reaction of 2-Et(2)O with a source of [Me](+) forms Cp*MoMe(3)(=N-OMe)(3), a rare terminal alkoxylimido complex. Metathesis of the chloro ligands of [Cp*Mo(NO)Cl(mu-Cl)](2) by MeLi in toluene at low temperatures produces the target dimethyl complex, Cp*Mo(NO)Me(2) (4), in 75% isolated yield. In solution, 4 is predominantly a monomeric species, whereas in the solid state it adopts a dimeric or oligomeric structure containing isonitrosyl bridges as indicated by IR and (15)N/(13)C NMR spectroscopies. Hydrolysis of 4 affords meso- and rac-[Cp*Mo(NO)Me](2)(mu-O) (5), and the reactions of 4 with a range of Lewis bases, L, to form the 18e adducts Cp*Mo(NO)(L)Me(2) (e.g., Cp*Mo(NO)(PMe(3))Me(2) (7)), have established it to be the most electrophilic complex of its family. Acidolysis of the methyl groups of 4 is also facile. Most notably, 4 is thermally unstable in solution and undergoes isomerization via nitrosyl N-O bond cleavage to its oxo(imido) form, Cp*Mo(NMe)(O)Me (11), which is isolable from the final reaction mixture as the mu-oxo-bridged adduct formed by 4 and 11, i.e., Cp*Mo(NO)Me(2)(mu-O)Cp*Mo(NMe)Me (4 <-- 11). The rate of this isomerization is significantly faster for the tungsten dimethyl complex; hence, Cp*W(NO)Me(2) (12) is not isolable free of a supporting donor interaction and can only be isolated as Cp*W(NO)Me(2)(mu-O)Cp*W(NMe)Me (12 <-- 13) or Cp*W(NO)Me(2)(PMe(3)) (14) adducts.  相似文献   

6.
7.
A new trinuclear species containing a Ta(IV)-Ta(IV) bond, Ta(3)(μ-H)(μ-NMe(2))(μ=NBu(t))(2)(=NBu(t))(NMe(2))(5), has been formed by reductive elimination of H(2). Ta(2)H(2)(μ-NMe(2))(2)(NMe(2))(2)(=NBu(t))(2) has also been isolated. O(2) oxidizes the Ta(IV)-Ta(IV) bond to yield Ta(3)(μ(3)-O)(H)(μ=NBu(t))(μ-NMe(2))(2)(NMe(2))(4)(=NBu(t))(2) under ligand exchange. Delocalization of d electrons is discussed.  相似文献   

8.
Azodicarboxylates and Diazoacetates as Reactants of the Ferriophosphaalkene [Cp*(CO)2FeP=C(Ph)NMe2] Reaction of equimolar amounts of the ferriophosphaalkene [Cp*(CO)2FeP=C(Ph)NMe2] ( 1 ) and diethyl azodicarboxylate afforded the complex (C5Me4CH2)(CO)2Fe ( 3 ) as the result of a cheletropic [1+4] cycloaddition with subsequent transprotonation. The diazoacetates N2=CHCO2R ( 8a :=tBu; 8b :Et) and 1 gave rise to the formation of the N‐metallated 1, 2, 3‐diazaphospholes [Cp*(CO)2Fe‐ ] ( 11a, b ). Compounds 3, 11a and 11b were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}, 31P{1H}‐NMR). The molecular structure of 11a was determined by X‐ray diffraction analysis.  相似文献   

9.
Reaction of the new precursor cis, trans-Ru(cod)(anln)2Cl2 with the diphosphine 1,2-bis(diphenylphosphino)-1,2-dicarba-closo-dodecaborane (o-dppc) unexpectedly results in two new ruthenium(II) hydrides, trans-Ru(o-dppc) 2(H)Cl and the neutral, five-coordinate complex Ru(o-dppc)(nido-dppc)(H), depending upon the reaction conditions [anln is aniline and nido-dppc is 7,8-(Ph2P)2C2B9H10(-)]. Chloride abstraction from trans-Ru(o-dppc)2(H)Cl leads to another five-coordinate hydride, [Ru(o-dppc)2(H)](+), which is isolated as either a triflate or hexafluorophosphate salt. On the basis of labeling and reactivity studies, the source of the hydride appears to be the cod ligand.  相似文献   

10.
利用溶剂热的方法将Cp2TiCl2(Cp=η5-C5H5)与2,6-吡啶二羧酸钠(L)反应,不同的反应时间得到了2个具有不同晶体空间群的化合物Cp2TiL(1a和1b),而在常温或低温下,Cp2TiCl2或CpTiCl3同羧酸盐或亚胺反应却得到了双核或四核氧桥联的钛化合物。  相似文献   

11.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

12.
The reaction mechanisms of group 6 transition metal dihydride complexes, Cp2MH2 (M = Cr, Mo, and W), and HBF4 were studied using M06‐L density functional theory. The chemical bond changes along the reaction pathway are analyzed by the topological analysis of electron density. The calculated results show that the interactions between the H atom of HBF4 and Cp2MH2 are stronger than those between Cp2MH2 and BF3; additionally, due to the low energy barriers in the subsequent reaction, all the title reactions can occur easily, and the yield rates of the Cp2MH2 + HBF4 reactions are high. For M = Cr and Mo, the [Cp2MH3]+ in the product Cp2MH3·BF4 is in the nonclassic dihydrogen‐hydride form ([Cp2M(η2‐H2)H]+). [Cp2CrH3]+ and [Cp2MoH3]+are unstable, and H2 can be easily liberated from them. For M = W, the final product is Cp2WH3·BF4, and [Cp2WH3]+ is stable in the classic trihydride form.  相似文献   

13.
The new fluoroboranes exo-2-FB4H9 1 and trans-MeCH=CHBF2 2 have been obtained unexpectedly and in good yield from the reaction of tetramethylammonium octahydrotriborate (NMe4B3H8) with boron trifluoride and propyne (MeC identical to CH).  相似文献   

14.
15.
(CO)4FeCS reacts with the ortho amide of the carbon acid C(NMe2)4 to yield the anionic thiocarbamoyl complex I, which with “magic methyl” can be converted into the neutral carbene complex. The spectroscopic properties (IR, NMR and mass spectra) of the new complexes are discussed.  相似文献   

16.
17.
The formation of a thermally unstable (4+2)-cycloadduct, a 4H-1,2-oxazine 2-oxide derivative (1), from the reaction of 1-nitrocyclopentene with 1-phenyl-2-(1-pyrrolidinyl)acetylene has been proven by the structure elucidation of isoxazole derivative 3 which results from thermal rearrangement and by the structure determination of the 1,3-dipolar adducts 5 of 1 with electron-deficient acetylenes.  相似文献   

18.
The C-amidoalkylation of p-cresol with 4-chloro-N-(2,2-dichloro-2-phenylethylidene)benzenesulfon-amide in the presence of H2SO4, oleum, or a mixture of H2SO4 and P4O10 was studied for the first time. It was shown that the reaction not only leads to the targeted 4-chloro-N-[2,2-dichloro-1-(2-hydroxy-5-methylphenyl)-2-phenylethyl]benzenesulfonamide but is also accompanied by unexpected formation of the heterocyclic derivatives 4-chloro-N-(5-methyl-2-phenyl-1-benzofuran-3-yl)benzenesulfonamide and 5-methyl-3-phenyl-2-benzofuran-2(3H)-one.  相似文献   

19.
Commercially available Ti(NMe(2))(4) has been used effectively as a precatalyst in a facile protocol for the intramolecular hydroamination of aminoalkenes to yield pyrrolidine and piperidine heterocyclic products with isolated yields up to 92%. Geminally substituted substrates display the highest reactivity. This precatalyst is also effective for the hydroamination of activated internal alkenes, providing access to more complex heterocyclic target molecules.  相似文献   

20.
Metal Complexes of Phenylenebistriazenides: Synthesis and Crystal Structures of [Cp(CO)2M]2(1,2-PhN3C6H4N3Ph) (M = Mo, W) [Cp(CO)2M]2(1,2-PhN3C6H4N3Ph) [(M = Mo( 1 ), M = W( 2 )] is formed in the reaction of Cp(CO)3MCl with PhN3(H)C6H4N3(H)Ph and C2H5ONa in a THF/ethanol mixture. 1 crystallizes from toluene as dark red crystals (triclinic, P1 , a = 1 499.3(9) pm, b = 1 734.0(7) pm, c = 1 852.8(8) pm, α = 66.84(3)°, β = 78.25(4)°, γ = 77.19(4)°). The unit cell contains four complexes with two independent complexes in the asymmetric unit, and eight solvent molecules. 2 crystallizes from THF as yellow crystals free from solvent molecules (triclinic, P1 , a = 979.0(5) pm, b = 1 152.8(5) pm, c = 1 475.8(5) pm, α = 98.26(4)°, β = 104.93(4)°, γ = 101.03(4)°, Z = 2). 1 and 2 are discrete molecular complexes with a 1,2-bis(phenyltriazenido)phenylligand, (PhN3C6H4N3Ph)2?, chelating the metal atoms of two Cp(CO)2M units with the N atoms N1 and N3 of both N3 groups. Due to the sterical pretension of the Cp(CO)2M units the phenylenebistriazenido ligand deviates strongly from planarity that is found in the metal complexes characterized so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号