首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multi-layered model for sliding frictional contact analysis of functionally graded materials (FGMs) with arbitrarily varying shear modulus under plane strain-state deformation has been developed. Based on the fact that an arbitrary curve can be approached by a series of continuous but piecewise linear curves, the FGM is divided into several sub-layers and in each sub-layers the shear modulus is assumed to be a linear function while the Poisson's ratio is assumed to be a constant. In the contact area, it is assumed that the friction is one of Coulomb type. With this model the fundamental solutions for concentrated forces acting perpendicular and parallel to the FGMs layer surface are obtained. Then the sliding frictional contact problem of a functionally graded coated half-space is investigated. The transfer matrix method and Fourier integral transform technique are employed to cast the problem to a Cauchy singular integral equation. The contact stresses and contact area are calculated for various moving stamps by solving the equations numerically. The results show that appropriate gradual variation of the shear modulus can significantly alter the stresses in the contact zone.  相似文献   

2.
In this paper, the fretting contact problem for two elastic solids with graded coatings is investigated. We assume a conventional axisymmetric Hertzian contact takes place between two elastic solids under the action of the normal pressure. The application of the torque produces an annulus of slip. It is assumed that the surface shear traction within the contact area is limited by Coulomb’s friction law and the torsion angel was produced within the central adhesion zone as a rigid body. The linear multi-layer model is used to model the functionally graded coating with arbitrarily varying shear modulus. This model divides the coating into a series of sub-layers with the elastic modulus varying linearly in each sub-layer and continuous on the sub-interfaces. By using the transfer matrix method and Hankel integral transform technique, this problem is formulated as the solution of the Cauchy singular integral equations. The contact tractions are calculated by solving the equations numerically. The results show that the appropriate gradual variation of the shear modulus can significantly alter the contact tractions. Therefore, graded coatings may have potential applications in improving the resistance to fretting contact damage at the contact surfaces.  相似文献   

3.
A new multi-layered model for fracture analysis of functionally graded materials (FGMs) with arbitrarily varying elastic moduli under plane deformation has been developed. In this model, the FGM is divided into several sub-layers and in each sub-layer the shear modulus is assumed to be a linear function of the depth while the Poisson's ratio is assumed to be a constant. With this new model, an interface crack problem of a functionally graded coating bonded to a homogeneous half-plane under normal and shear loading is investigated. Employment of transfer matrix method and Fourier integral transform technique reduces the problem to a system of Cauchy singular integral equations which are solved numerically. Stress intensity factors of an interface crack are obtained for the cases of the shear modulus varying in an exponential manner and in a sinusoidal manner. Comparison of the present new model to other existing models shows that the new one is more efficient.  相似文献   

4.
The main interest of this study is a new method to solve the axisymmetric frictionless contact problem of functionally graded materials (FGMs). Based on the fact that an arbitrary curve can be approached by a series of continuous but piecewise linear curves, the FGM is divided into a series of sub-layers with shear modulus varying linearly in each sub-layer and continuous at the sub-interfaces. With this model, the axisymmetric frictionless contact problem of a functionally graded coated half-space is investigated. By using the transfer matrix method and Hankel integral transform technique, the problem is reduced to a Cauchy singular integral equation. The contact pressure, contact region and indentation are calculated for various indenters by solving the equations numerically. An erratum to this article can be found at  相似文献   

5.
In this paper, the axisymmetric contact problem with the partial slip condition for a functionally graded coated half-space which is indented by a rigid spherical indenter is considered. The material properties are assumed to vary along the thickness of the coating. A series of linear functions of the thickness are used to model the functionally graded coating with the arbitrarily varying shear modulus. The contact problem is formulated in terms of a set of Cauchy singular integral equations by employment of Hankel integral transforms technique and transfer matrix method. By using the uncoupled solution and the coupled solution,the coupled equations are solved. The effect of the coating’s gradient on the normal and radial tractions in the whole contact region is presented. The results show that the contact tractions and the size of the stick zone can be altered by adjusting the gradient of the coating. This may have potential applications in the resistance of contact deformation and damage.  相似文献   

6.
研究Winker地基模型上功能梯度材料涂层在一刚性圆柱形冲头作用下的摩擦接触问题。功能梯度材料涂层表面作用有法线向和切线向集中作用力。假设材料非均匀参数呈指数形式变化,泊松比为常量,利用Fourier积分变换技术将求解模型的接触问题转化为奇异积分方程组,再利用切比雪夫多项式对所得奇异积分方程组进行数值求解。最后,给出了功能梯度材料非均匀参数、摩擦系数、Winker地基模型刚度系数及冲头曲率半径对接触应力分布和接触区宽度的影响情况。  相似文献   

7.
The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered. The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young’s modulus is represented by a polynomial in the thickness coordinate, but the Poisson’s ratio is kept constant. The two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the impact problem we used a simple dynamic model based on quasi-static behavior of the panel—the sandwich beam was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring to represent the local indentation effects. Results indicate that the contact stiffness of the beam with graded core increases causing the contact stresses and other stress components in the vicinity of contact to increase. However, the values of maximum strains corresponding to the maximum impact load are reduced considerably due to grading of the core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites.  相似文献   

8.
This paper investigates the plane problem of a frictional receding contact formed between an elastic functionally graded layer and a homogeneous half space, when they are pressed against each other. The graded layer is assumed to be an isotropic nonhomogeneous medium with an exponentially varying shear modulus and a constant Poisson’s ratio. A segment of the top surface of the graded layer is subject to both normal and tangential traction while rest of the surface is devoid of traction. The entire contact zone thus formed between the layer and the homogeneous medium can transmit both normal and tangential traction. It is assumed that the contact region is under sliding contact conditions with the Coulomb’s law used to relate the tangential traction to the normal component. Employing Fourier integral transforms and applying the necessary boundary conditions, the plane elasticity equations are reduced to a singular integral equation in which the unknowns are the contact pressure and the receding contact lengths. Ensuring mechanical equilibrium is an indispensable requirement warranted by the physics of the problem and therefore the global force and moment equilibrium conditions for the layer are supplemented to solve the problem. The Gauss–Chebyshev quadrature-collocation method is adopted to convert the singular integral equation to a set of overdetermined algebraic equations. This system is solved using a least squares method coupled with a novel iterative procedure to ensure that the force and moment equilibrium conditions are satisfied simultaneously. The main objective of this paper is to study the effect of friction coefficient and nonhomogeneity factor on the contact pressure distribution and the size of the contact region.  相似文献   

9.
功能梯度材料涂层半空间的轴对称光滑接触问题   总被引:2,自引:0,他引:2  
求解了功能梯度材料涂层半空间的轴对称光滑接触问题,其中梯度层剪切模量按照线性变化,利用Hankel积分变换方法求解微分方程,将问题化为具有Cauchy型奇异核的积分方程.数值方法求解表明:功能梯度材料涂层半空间在刚性柱形压头和球形压头作用下,接触表面分布应力,接触半径以及最大压痕受材料梯度效应的影响较大.  相似文献   

10.
Anti-plane dynamic fracture analysis is presented for functionally graded materials (FGM) with arbitrary spatial variations of material properties. The FGM with the material properties varying continuously in an arbitrary manner is modeled as a multi-layered medium with the elastic modulus and mass density varying linearly in each sub-layer and continuous at the interfaces between two adjacent sub-layers. With this linearly inhomogeneous multi-layered model, the problem of a crack in a graded interfacial zone bonded to two homogeneous half-spaces or in a coating bonded to a homogeneous half-space subjected to the anti-plane shear impact load is investigated. Laplace and Fourier transforms and transfer matrix are applied to reduce the associated mixed boundary value problem to a Cauchy singular integral equation which is solved numerically in the Laplace transformed domain. The dynamic stress intensity factors (DSIF) are obtained by using the numerical technique of Laplace inversion.  相似文献   

11.
A continuous contact problem of functionally graded layer resting on an elastic semi-infinite plane, which is loaded with through two different blocks is addressed in this study. The elasticity theory and integral transformation techniques are used in solution of the problem. The problem is reduced to a system of singular integral equations, and solved numerically by the aid of appropriate Gauss–Chebyshev integration formula. It is assumed that the elastic semi-infinite homogeneous plane is isotropic and all surfaces are frictionless and continuous. The shear modulus and the mass density of the FG layer vary exponentially along the thickness direction.  相似文献   

12.
Numerical analysis of the low-velocity impact damage of a layered composite beam with a functionally graded core is performed using the multiple-isoparametric cohesive volume finite element (MCVFE) scheme. A mixed-mode intrinsic cohesive zone model is used to simulate the spontaneous damage initiation and growth in this work. The inhomogeneous Young’s modulus variation is assumed to be symmetric about the neutral plane. Our parametric simulations showed that the energetics of damage is altered by the presence of a functionally graded core. The effect of including a functionally graded core is to advance the time of fracture initiation compared to a cross-ply (90°) core. The assumed symmetry and linear inhomogeneity leads to the energetics for the graded core to be similar to those observed for a 45° core ply-orientation.  相似文献   

13.
功能梯度材料的平面断裂力学分析   总被引:16,自引:4,他引:16  
针对材料参数在厚度方向可能按任意连续变化的梯度材料,给出了一个新的分层模型,利用该模型求解了面内加载下梯度界面层和涂层中的界面裂纹问题,借助Fburier积分技术和传递矩阵方法,将该问题化为一个Cauchy型奇异积分方程,通过数值求解,得到感兴趣的应力强度因子,对不同形式的杨氏模量和泊松比,计算了界面裂纹应力强度因子,结果表明泊松比的变化形式对应力强度因子影响不大,可当作常数处理,而杨氏模量的影响则很大。  相似文献   

14.
功能梯度材料涂层平面裂纹分析   总被引:4,自引:1,他引:3  
程站起  仲政 《力学学报》2007,39(5):685-691
研究粘接于均质基底材料上功能梯度涂层平面裂纹问题. 假设功能梯度材料剪切模量的倒数为坐标的线性函数,而泊松比为常数. 采用Fourier变换和传递矩阵法将该混合边值问题化为奇异积分方程组,通过数值求解获得 应力强度因子. 考察了材料梯度变化形式、结构几何尺寸和材料梯度参数对裂纹应力强度因子的影响,发现 功能梯度材料涂层尺寸、裂纹长度以及材料梯度参数均对应力强度因子有显著影响.  相似文献   

15.
FRACTURE ANALYSIS OF A FUNCTIONALLY GRADED STRIP UNDER PLANE DEFORMATION   总被引:4,自引:0,他引:4  
In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, while the Possion's ratio keeps constant. By utilizing the Fourier transformation technique and the transfer matrix method, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. The influences of the geometric parameters and the graded parameter on the stress intensity factors and the strain energy release rate are investigated. The numerical results show that the graded parameters, the thickness of the strip and the crack size have significant effects on the stress intensity factors and the strain energy release rate.  相似文献   

16.
Studied is the problem of a periodic array of cracks in a functionally graded piezoelectric strip bonded to a homogeneous piezoelectric material. The properties of the functionally graded piezoelectric strip, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The crack surface condition is assumed to be electrically impermeable or permeable. Integral transform and dislocation density functions are employed to reduce the problem to the solution of a system of singular integral equations. The effects of the periodic crack spacing, material constants and the geometry parameters on the stress intensity factor, the energy release ratio and the energy density factor are studied.  相似文献   

17.
The basic solution of two parallel mode-I permeable cracks in functionally graded piezoelectric materials was studied in this paper using the generalized Almansi’s theorem. To make the analysis tractable, it was assumed that the shear modulus varies exponentially along the horizontal axis parallel to the crack. The problem was formulated through a Fourier transform into two pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surface. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. The solution of the present paper shows that the singular stresses and the singular electric displacements at the crack tips in functionally graded piezoelectric materials carry the same forms as those in homogeneous piezoelectric materials; however, the magnitudes of intensity factors depend on the gradient of functionally graded piezoelectric material properties. It was also revealed that the crack shielding effect is also present in functionally graded piezoelectric materials.  相似文献   

18.
IntroductionInrecentyears,greatattentionshavebeenpaidtotheresearchofFunctionallyGradedMaterials(FGM).Fromtheviewpointsofappliedmechanics,FGMarenon_homogeneoussolids.Thenon_homogeneityofFGMhasagreatinfluenceontheirmechanicalbehavior,especiallywhenthecomp…  相似文献   

19.
In this paper, the interaction of two collinear cracks in functionally graded materials subjected to a uniform anti-plane shear loading is investigated by means of nonlocal theory. The traditional concepts of the nonlocal theory are extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with the coordinate vertical to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present near the crack tips. The nonlocal elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion in functionally graded materials. The magnitude of the finite stress field depends on the crack length, the distance between two cracks, the parameter describing the functionally graded materials and the lattice parameter of the materials.  相似文献   

20.
THE PERIODIC CRACK PROBLEM IN BONDED PIEZOELECTRIC MATERIALS   总被引:3,自引:0,他引:3  
The problem of a periodic array of parallel cracks in a homogeneous piezoelectric strip bonded to a functionally graded piezoelectric material is investigated for inhomogeneous continuum.It is assumed that the material inhomogeneity is represented as the spatial varia- tion of the shear modulus in the form of an exponential function along the direction of cracks. The mixed boundary value problem is reduced to a singular integral equation by applying the Fourier transform,and the singular integral equation is solved numerically by using the Gauss- Chebyshev integration technique.Numerical results are obtained to illustrate the variations of the stress intensity factors as a function of the crack periodicity for different values of the material inhomogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号