首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of a certain class of dynamical systems. Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical systems with gyroscopic forces. Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic systems with non-conservative forces. Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of non-conservative systems with degenerate matrices of dissipative forces. Prikl Mat Mekh 2004; 68 (6): 906–913), the general problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation to an equivalent autonomous form (in Lyapunov's sense) with a symmetrical matrix of the positional forces. An illustrative example is considered.  相似文献   

2.
An analysis of the current state of the geometrically non-linear theory of elasticity and of thin shells is presented in the case of small deformations but large displacements and rotations, the ratios of which are known as the ratios of the non-linear theory in the quadratic approximation. It is shown that they required specific revision and correction by virtue of the fact that, when they are used in the solution of problems, spurious bifurcation points appear. In view of this, consistent geometrically non-linear equations of the theory of thin shells of the Timoshenko type are constructed in the quadratic approximation which enable one to investigate in a correct formulation both flexural as well as previously unknown non-classical forms of loss of stability (FLS) of thin plates and shells, many of which are encountered in practice, primarily in structures made of composite materials with a low shear stiffness. In the case of rectilinear elastic whereas, which are subjected to the action of conservative external forces and are made of an orthotropic material, the three-dimensional equations of the theory of elasticity are reduced to one-dimensional equations by using the Timoshenko model. Two versions of the latter equations are derived. The first of these corresponds to the use of the consistent version of the three-dimensional, geometrically non-linear relations in an incomplete quadratic approximation and the Timoshenko model without taking account of the transverse stretching deformations, and the second corresponds to the use of the three- dimensional relations in the complete quadratic approximation and the Timoshenko model taking account of the transverse stretching deformations. A series of new non-classical problems of the stability of columns is formulated and their analytical solutions are found using the equations which have been derived with the aim of analyzing their richness of content. Among these are problems concerning the torsional, flexural and shear FLS of a column in the case of a longitudinal axial, bilateral transverse and trilateral compression, a flexural-torsional FLS in the case of pure bending and axial compression together with pure bending and, also, a flexural FLS of a column in the case of torsion and a flexural-torsional FLS under conditions of pure shear. Five FLS of a cylindrical shell under torsion are investigated using the linearized neutral equilibrium equations which have been constructed: 1) a torsional FLS where the solution corresponding to it has a zero variability of the functions in the peripheral direction, 2) a purely beam bending FLS that is possible in the case of long shells and is accompanied by the formation of a single half-wave along the length of the shell while preserving the initial circular form of the cross-section, 3) a classical bending FLS, which is accompanied by the formation of a small number of half-waves in the axial direction and a large number of half-waves in a peripheral direction which is true in the case of long shells, 4) a classical bending FLS which holds in the case of short and medium length shells (the third and fourth types of FLS have already been thoroughly studied in the case of isotropic cylindrical shells), 5) a non-classical FLS characterized by the formation of a large number of shallow depressions in the axial as well as in the peripheral directions; the critical value of the torsional moment corresponding to this FLS is practically independent of the relative thickness of the shell. It is established that the well-known equations of the geometrically non-linear theory of shells, which were formulated for the case of the mean flexure of a shell, do not enable one to reveal the first, second and fifth non-classical FLS.  相似文献   

3.
Starting from the consistent version of the geometrically non-linear equations of the theory of elasticity for small deformations and arbitrary displacements, a Timoshenko-type model that takes account of shear and compression deformations and also an extended variational Lagrange principle, an improved geometrically non-linear theory of static deformation is constructed for reinforced thin-walled structures with shell elements, the end sections of which are connected by a rod. It is based on the introduction into the treatment of contact forces and torques as unknowns on the lines joining the shells to the rods and it enables all classical and non-classical forms of loss of stability in structures of the class considered to be investigated. An analytical solution of the problem of the stability of a rectangular plate, that is under compression in one direction, supported by a hinge along two opposite edges and joined by a hinge with an elastic rod on one of the other two edges, is found using a simplified version of the linearized equations.  相似文献   

4.
To validate earlier results for the case of arbitrary deformations and displacements in orthogonal curvilinear coordinates, kinematic and static relations of the non-linear theory of elasticity are set up which, in the limit of small deformations, lead, unlike the known relations, to correct and consistent relations. The same relations are also constructed for momentless shells of general form for the case of arbitrary displacements and deformations on the basis of which the problem of the static instability of a cylindrical shell with closed ends, made of a linearly elastic material and under conditions of an internal pressure (the problem of the inflation of a cylinder), is considered. It is shown that, in the case of momentless shells, the components of the true sheat stresses are symmetrical, unlike the three-dimensional case. All the above-mentioned relations are constructed for the loading of deformable bodies both by conservative external forces of constant directions and, also, by two types of “following” forces.  相似文献   

5.
The stability of linear potential systems with a degenerate matrix of gyroscopic forces is investigated. Particular attention is devoted to the case of three degrees of freedom. In a development of existing results [Kozlov VV. Gyroscopic stabilization and parametric resonance. Prikl. Mat. Mekh. 2001; 65(5): 739–745], the sufficient conditions for gyroscopic stability are obtained. An algorithm for applying these conditions is proposed using the example of the problem of the motion of two mutually gravitating bodies, each of them being modelled by two equal point masses, connected by weightless inextensible rods.  相似文献   

6.
A method for calculating the thermoelastoplastic geometrically nonlinear state of branched laminar shells is elaborated. The method is based on the shear kinematic model for the whole package of layers and on the theory of simple loading processes. The linearization of geometrically nonlinear equations is realized using the Newton method.  相似文献   

7.
We derive new refined geometrically nonlinear equations of motion for elongated rod-type plates. They are based on the proposed earlier relationships of geometrically nonlinear theory of elasticity in the case of small deformations and refined S. P. Timoshenko’s shear model. These equations allow to describe the high-frequency torsional oscillation of elongated rod-type plate formed in them when plate performs low-frequency flexural vibrations. By limit transition to the classical model of rod theory we carry out transformation of derived equations to simplified system of equations of lower degree.  相似文献   

8.
We prove the existence theorem for solutions of geometrically nonlinear boundary-value problems for elastic shallow isotropic homogeneous shells with free edges under shear model of S. P. Timoshenko. Research method consists in the reduction of the original system of equilibrium equations to a single nonlinear equation for the components of transverse shear deformations. The basis of this method are integral representations for the generalized displacements, containing an arbitrary holomorphic functions, which are determined by the boundary conditions involving the theory of one-dimensional singular integral equations.  相似文献   

9.
Based on a previously constructed, consistent version of the geometrically non-linear equations of elasticity theory, for small deformations and arbitrary displacements, and a Timoshenko-type model taking into account transverse shear and compressive deformations, one-dimensional equations of an improved theory are derived for plane curvilinear rods of arbitrary type for arbitrary displacements and revolutions and with loading of the rods by follower and non-follower external forces. These equations are used to construct linearized equations of neutral equilibrium that enable all possible classical and non-classical forms of loss of stability (FLS) of rods of orthotropic material to be investigated, ignoring parametric deformation terms in the equations. These linearized equations are used to find accurate analytical solutions of the problem of plane classical flexural-shear and non-classical flexural-torsional FLS of a circular ring under the combined and separate action of a uniform external pressure and a compression in the radial direction by forces applied to both faces.  相似文献   

10.
A problem of the dynamic process of their deformation is formulated in the momentless approximation for thin shells made of rubber-like elastomers under the action of a time-varying excess hydrostatic pressure. A system of non-linear equations of motion is set up for the case of arbitrary displacements and deformations in which the true deformation of the transverse compression of the shell, corresponding to the use of the modified Kirchhoff–Love model proposed earlier, and the coordinates of the points of the middle surface with respect to a fixed Cartesian system of coordinates, are taken as the required unknown functions. Physical relations connecting the components of the true internal stresses with the elongation factors and the extent of the shear strain are constructed using relations proposed earlier by Chernykh. A finite-difference method is developed for solving the initial-boundary value problem and, on the basis of this, the dynamic process of the inflation of shells of revolution at different rates of pressure increase is investigated and the unstable stages of their deformation are established with a determination of the corresponding limiting (critical) pressure value. After this value has been reached, a further increase in the deformations occurs at decreasing values of the internal pressure.  相似文献   

11.
Solutions of the non-linear hyperbolic equations describing quasi-transverse waves in composite elastic media are investigated within the framework of a previously proposed model, which takes into account small dissipative and dispersion processes. It is well known for this model that if a solution of the problem of the decay of an arbitrary discontinuity is constructed using Riemann waves and discontinuities having a structure, the solution turns out to be non-unique. In order to study the problem of non-uniqueness, solutions of non-self-similar problems are constructed numerically within the framework of the proposed model with initial data in the form of a “smooth” step. With time passing the solutions acquire a self-similar asymptotic form, corresponding to a certain solution of the problem of the decay of an arbitrary discontinuity. It is shown that, by changing the method of smoothing the step, one can construct any of the self-similar asymptotic forms, as was done previously in Ref. [Chugainova AP. The asymptotic behaviour of non-linear waves in elastic media with dispersion and dissipation. Teor Mat Fiz 2006;147(2):240–56] for media with terms of opposite sign, responsible for the non-linearity, although the set of admissible discontinuities and the structure of the solutions of the problems in these cases turn out to be different.  相似文献   

12.
Based on the hypothesis of similarity of transverse displacements in thin-walled sandwich shells with a transversely soft core under dynamic and static loads, refined geometrically nonlinear dynamic equations of motion are constructed in the case of large variations in the parameters of the stress-strain state (SSS) in the tangential directions. For shells structurally symmetric across the thickness and loaded with initial static loads, linearized dynamic equations are derived, which, upon introducing the synphasic and antiphasic functions of displacements and forces, can be used to describe the synphasic and antiphasic buckling forms in the transverse and tangential directions. For nonshallow cylindrical and shallow spherical shells, the nonclassical problems on all possible vibration forms realized at zero indices of variability of the SSS parameters in the tangential directions are formulated and solved. For shallow shells of symmetric structure, the resolving equations are obtained by introducing, instead of tangential displacements and transverse tangential stresses in the core, the corresponding potential and vortex functions.  相似文献   

13.
New formulations and methods for the solution of the inverse problems of thin-walled layered and reinforced shells and plates are discussed. Rational projects with regard for the requirements of nonflexural deformations in layered structural members, the given deformability of particular surfaces, the realization of a strictly momentless state, an equally stressed reinforcement, and the breaking strength of the binder at the interfaces are investigated. A brief review of the known solutions to these problems is given, and solutions to some new problems are described.  相似文献   

14.
The methods for determining the nonaxisymmetric thermoelastoplastic stress-strain state of layered orthotropic shells of revolution are developed. It is assumed that the layered package deforms without mutual slippage or separation of layers. The problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. In the isotropic layers, plastic deformations may appear, whereas the orthotropic layers deform in the elastic region. It is assumed that the mechanical properties of the materials are temperature-dependent. The thermoplasticity equations are presented in a form corresponding to the method of additional deformations. The order of the system of partial differential equations obtained is reduced with the help of trigonometric series in the circumferential coordinate. The resulting systems of ordinary differential equations are solved by the Godunov technique of discrete orthogonalization. The nonaxisymmetric thermoelastoplastic stress-strain states of layered shells of revolution are considered as examples.  相似文献   

15.
Two formulations of elastoplastic problems in the mechanics of deformable solids with finite displacements and deformations are investigated. The first of these is formulated starting from the classical geometrically non-linear equations of the theory of elasticity and plasticity, in which the components of the Cauchy–Green strain tensor, associated with the components of the conditional stress tensor by physically non-linear relations according to flow theory in the simplest version of their representation, are taken as a measure of the deformations. The second formulation is based on the introduction of the true tensile and shear strains which, according to Novoshilov, are associated with the components of the true stresses by physical relations of the above-mentioned form. It is shown that, in the second version of the formulation of the problem, the use of the corresponding equations, complied taking account of the elastoplastic properties of the material with correct modelling of the ends of cylindrical samples and the method of loading (stretching) them, enables the location of the formation of a neck to be determined theoretically and enables the initial stage of its formation to be described without making any assumptions regarding the existence of initial irregularities in the geometry of the samples.  相似文献   

16.
The problem of the buckling of elastic, isotropic, thin-walled cylindrical shells with small initial shape defects that are under the action of an external pressure is solved in a geometrically non-linear formulation. Equations that are identical to Marguerre's equations for a shallow cylindrical shell are used in formulating the problem. The solution is constructed by the Rayleigh–Ritz method with the points of the middle surface of the shell approximated by double functional sums over trigonometric and beam functions. The system of non-linear equations obtained is solved by arc-length methods. Cases of the clamped and supported shells when loading with a lateral and uniform hydrostatic pressure are considered. Its deflections from the limit points of the postbuckling branches of its loading trajectory are used as the initial imperfections. An inspection of the different forms of the initial imperfections when they have maximum values of up to 30% of the shell thickness made it possible to obtain practically the whole range of experimentally found critical pressures.  相似文献   

17.
For the sandwich plates and shells with transversally-soft core and carrier layers having on the outer contour of the reinforcing rod, for small deformations, and middle displacements we construct refined geometrically nonlinear theory. This theory allows to describe the process of the subcritical deformation and identify all possible buckling of carrier layers and reinforcing rods. It is based on the introduction as unknown contact forces at the points of interaction mating surface of the outer layers with core and carrier layers and a core with reinforcing rods at all points of the surface of their conjugation to the shell contour. To derive the basic equations of equilibrium, static boundary conditions for the shell and reinforcing rods, as well as conditions of the kinematic coupling of the carrier layers with a core, the carrier layers and a core with reinforcing rods we use previously proposed generalized Lagrange variational principle.  相似文献   

18.
Soft shells made of elastomers and undergoing large deformations under load are studied. The inverse design problem, non-linear under large deformations, is solved. The results obtained are illustrated on a two-parameter shell of revolution fabricated from a two-constant material. The problems of coupling the biaxial and uniaxial zones of the shell and of designing the composite shell are clarified. Amongst the papers dealing with the theory of soft shells and, generally, under small deformations, /1–7/ merit attention.  相似文献   

19.
For problems of the mechanics of an anisotropic inhomogeneous continuum, theorems are given concerning the uninterrupted symmetrical and antisymmetrical analytical continuation of the solution through the plane part of the boundary surface of the medium. Theorems are given for two types of mechanics problem; in the first of these both symmetrical and antisymmetrical continuations of the solution are allowed, while in the second only symmetrical continuation of the solution is allowed. Problems of the first type include problems which are reduced to linear thermoelastic dynamic differential equations of motion of an inhomogeneous anisotropic medium possessing a plane of elastic symmetry, to linear thermoelastic dynamic differential equations of motion of an inhomogeneous Cosserat medium, to non-linear differential equations describing the static elastoplastic stress state of a plate, etc. The second type includes problems which are reduced to non-linear differential equations describing geometrically non-linear strains of shells, to Navier–Stokes equations, etc. These theorems extend the principle of mirror reflection (the Riemann–Schwartz principle of symmetry) to linear and non-linear equations of continuum mechanics. The uninterrupted continuation of the solutions is used to solve problems of the equilibrium state of bodies of complex shape.  相似文献   

20.
Problems on large stretching, torsional and bending deformations of a naturally twisted rod, loaded with end forces and moments, are considered from the point of view of the non-linear three-dimensional theory of elasticity. Particular solutions of the equations of elastostatics are found, which are two-parameter families of finite deformations and which possess the property that, for these deformations, the initial system of three-dimensional non-linear equations reduces to a system of equations with two independent variables. The use of these equations enables one to reduce certain Saint-Venant problems for a naturally twisted rod to two-dimensional non-linear boundary-value problems for a planar domain in the form of the cross-section of a rod. Different formulations of the two-dimensional boundary-value problem for the cross-section are proposed, which differ in the choice of the unknown functions. A non-linear problem of the torsion and stretching of a circular cylinder with helical anisotropy, which is reduced to ordinary differential equations, is considered as a special case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号